基于云的微观车辆交通模拟的性能感知划分算法

Anibal Siguenza-Torres, Wentong Cai, Alois Knoll
{"title":"基于云的微观车辆交通模拟的性能感知划分算法","authors":"Anibal Siguenza-Torres, Wentong Cai, Alois Knoll","doi":"10.1145/3573900.3593629","DOIUrl":null,"url":null,"abstract":"Distributed computing is one of the ways to scale up agent-based microscopic vehicle traffic simulations. A key factor for performance is the partitioning of the road network providing computation load balancing and minimizing communication cost. Many approaches use the number of agents as proxy to estimate the computational and communication costs, assuming a direct relation. However this assumption does not hold in a heterogeneous computing environment, e.g. on the cloud. This work discusses a novel proposal to improve the prediction of the computational and communication costs by using information of the simulation’s run-time environment. Preliminary evidence indicates that making the partitioning performance-aware results in higher performance.","PeriodicalId":246048,"journal":{"name":"Proceedings of the 2023 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards a Performance-Aware Partitioning Algorithm for Cloud-Based Microscopic Vehicle Traffic Simulations\",\"authors\":\"Anibal Siguenza-Torres, Wentong Cai, Alois Knoll\",\"doi\":\"10.1145/3573900.3593629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed computing is one of the ways to scale up agent-based microscopic vehicle traffic simulations. A key factor for performance is the partitioning of the road network providing computation load balancing and minimizing communication cost. Many approaches use the number of agents as proxy to estimate the computational and communication costs, assuming a direct relation. However this assumption does not hold in a heterogeneous computing environment, e.g. on the cloud. This work discusses a novel proposal to improve the prediction of the computational and communication costs by using information of the simulation’s run-time environment. Preliminary evidence indicates that making the partitioning performance-aware results in higher performance.\",\"PeriodicalId\":246048,\"journal\":{\"name\":\"Proceedings of the 2023 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3573900.3593629\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3573900.3593629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分布式计算是扩展基于智能体的微观车辆交通模拟的方法之一。性能的一个关键因素是道路网络的划分,提供计算负载平衡和最小化通信成本。许多方法使用代理的数量作为代理来估计计算和通信成本,假设两者之间存在直接关系。然而,这种假设在异构计算环境中并不成立,例如在云上。本文讨论了一种利用仿真运行时环境信息来改进计算和通信成本预测的新方法。初步证据表明,使分区具有性能意识可以提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards a Performance-Aware Partitioning Algorithm for Cloud-Based Microscopic Vehicle Traffic Simulations
Distributed computing is one of the ways to scale up agent-based microscopic vehicle traffic simulations. A key factor for performance is the partitioning of the road network providing computation load balancing and minimizing communication cost. Many approaches use the number of agents as proxy to estimate the computational and communication costs, assuming a direct relation. However this assumption does not hold in a heterogeneous computing environment, e.g. on the cloud. This work discusses a novel proposal to improve the prediction of the computational and communication costs by using information of the simulation’s run-time environment. Preliminary evidence indicates that making the partitioning performance-aware results in higher performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信