集成cnn用于可疑皮肤病变的皮肤镜分析

Yali Nie, M. Ferro, P. Sommella, M. Carratù, S. Cacciapuoti, G. D. Leo, J. Lundgren, G. Fabbrocini
{"title":"集成cnn用于可疑皮肤病变的皮肤镜分析","authors":"Yali Nie, M. Ferro, P. Sommella, M. Carratù, S. Cacciapuoti, G. D. Leo, J. Lundgren, G. Fabbrocini","doi":"10.1109/MeMeA52024.2021.9478760","DOIUrl":null,"url":null,"abstract":"Deep Convolution Neural Networks (CNN) enable advanced methods to predict the skin cancer classes through the automatic analysis of digital dermoscopic images. However, small datasets' availability often allows the models to be characterized by low prediction accuracy and poor generalization ability, which significantly influences clinical decisions. This paper proposes to use an original ensembling of multiple CNNs as feature extractors able to detect and measure skin lesions atypical criteria according to the well-known diagnostic method 7-Point Check List. The experimental results show that the Artificial Intelligence-based model can suitably manage the classification uncertainty of the single CNNs and finally distinguish melanomas from benignant nevi. Diagnostic performance is promising in terms of sensitivity and specificity towards a decision-supporting system used by a dermatologist with low experience during clinical practice.","PeriodicalId":429222,"journal":{"name":"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ensembling CNNs for dermoscopic analysis of suspicious skin lesions\",\"authors\":\"Yali Nie, M. Ferro, P. Sommella, M. Carratù, S. Cacciapuoti, G. D. Leo, J. Lundgren, G. Fabbrocini\",\"doi\":\"10.1109/MeMeA52024.2021.9478760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep Convolution Neural Networks (CNN) enable advanced methods to predict the skin cancer classes through the automatic analysis of digital dermoscopic images. However, small datasets' availability often allows the models to be characterized by low prediction accuracy and poor generalization ability, which significantly influences clinical decisions. This paper proposes to use an original ensembling of multiple CNNs as feature extractors able to detect and measure skin lesions atypical criteria according to the well-known diagnostic method 7-Point Check List. The experimental results show that the Artificial Intelligence-based model can suitably manage the classification uncertainty of the single CNNs and finally distinguish melanomas from benignant nevi. Diagnostic performance is promising in terms of sensitivity and specificity towards a decision-supporting system used by a dermatologist with low experience during clinical practice.\",\"PeriodicalId\":429222,\"journal\":{\"name\":\"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MeMeA52024.2021.9478760\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA52024.2021.9478760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度卷积神经网络(CNN)通过对数字皮肤镜图像的自动分析,实现了预测皮肤癌类别的先进方法。然而,由于数据集较小,模型的预测精度较低,泛化能力较差,严重影响临床决策。本文提出使用多个cnn的原始集合作为特征提取器,能够根据著名的7点检查表诊断方法检测和测量皮肤病变的非典型标准。实验结果表明,基于人工智能的模型可以很好地管理单个cnn的分类不确定性,最终区分出黑色素瘤和良性肿瘤。诊断性能是有希望的敏感性和特异性对决策支持系统使用的皮肤科医生在临床实践经验低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ensembling CNNs for dermoscopic analysis of suspicious skin lesions
Deep Convolution Neural Networks (CNN) enable advanced methods to predict the skin cancer classes through the automatic analysis of digital dermoscopic images. However, small datasets' availability often allows the models to be characterized by low prediction accuracy and poor generalization ability, which significantly influences clinical decisions. This paper proposes to use an original ensembling of multiple CNNs as feature extractors able to detect and measure skin lesions atypical criteria according to the well-known diagnostic method 7-Point Check List. The experimental results show that the Artificial Intelligence-based model can suitably manage the classification uncertainty of the single CNNs and finally distinguish melanomas from benignant nevi. Diagnostic performance is promising in terms of sensitivity and specificity towards a decision-supporting system used by a dermatologist with low experience during clinical practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信