{"title":"云计算中的网络流方法","authors":"S. Feizi, Amy Zhang, M. Médard","doi":"10.1109/CISS.2013.6624265","DOIUrl":null,"url":null,"abstract":"In this paper, by using network flow principles, we propose algorithms to address various challenges in cloud computing. One of the main challenges is to consider both communication and computation constraints in the network. In the proposed network flow framework, we model the amount of computation in each node of the network as a function of its total self-loop flows. We consider two computation cost models: a linear computation cost model and a maximum computation cost model. We show that, our network flow framework can be used as a systematic technique of balancing computation loads over different nodes of the network. This network flow framework can also be used for cloud network design. A network topology is optimal for certain computations if it maximizes the total computation rate under communication/computation constraints. We propose a greedy algorithm to design a cloud network with a certain network characteristics in terms of communication and computation costs. We provide simulation results to illustrate the performance of our algorithms.","PeriodicalId":268095,"journal":{"name":"2013 47th Annual Conference on Information Sciences and Systems (CISS)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Network Flow Approach in Cloud Computing\",\"authors\":\"S. Feizi, Amy Zhang, M. Médard\",\"doi\":\"10.1109/CISS.2013.6624265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, by using network flow principles, we propose algorithms to address various challenges in cloud computing. One of the main challenges is to consider both communication and computation constraints in the network. In the proposed network flow framework, we model the amount of computation in each node of the network as a function of its total self-loop flows. We consider two computation cost models: a linear computation cost model and a maximum computation cost model. We show that, our network flow framework can be used as a systematic technique of balancing computation loads over different nodes of the network. This network flow framework can also be used for cloud network design. A network topology is optimal for certain computations if it maximizes the total computation rate under communication/computation constraints. We propose a greedy algorithm to design a cloud network with a certain network characteristics in terms of communication and computation costs. We provide simulation results to illustrate the performance of our algorithms.\",\"PeriodicalId\":268095,\"journal\":{\"name\":\"2013 47th Annual Conference on Information Sciences and Systems (CISS)\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 47th Annual Conference on Information Sciences and Systems (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS.2013.6624265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 47th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2013.6624265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, by using network flow principles, we propose algorithms to address various challenges in cloud computing. One of the main challenges is to consider both communication and computation constraints in the network. In the proposed network flow framework, we model the amount of computation in each node of the network as a function of its total self-loop flows. We consider two computation cost models: a linear computation cost model and a maximum computation cost model. We show that, our network flow framework can be used as a systematic technique of balancing computation loads over different nodes of the network. This network flow framework can also be used for cloud network design. A network topology is optimal for certain computations if it maximizes the total computation rate under communication/computation constraints. We propose a greedy algorithm to design a cloud network with a certain network characteristics in terms of communication and computation costs. We provide simulation results to illustrate the performance of our algorithms.