{"title":"基于知识的模拟电路合成的原型框架","authors":"R. Harjani, Rob A. Rutenbar, L. Carley","doi":"10.1145/62882.62956","DOIUrl":null,"url":null,"abstract":"An organization for a knowledge-based analog circuit synthesis tool is described. Analog circuit topologies are represented as a hierarchy of functional blocks; a planning mechanism is introduced to translate performance specifications between levels in this circuit hierarchy. A prototype implementation, OASYS, synthesizes sized transistor schematics for simple CMOS operational amplifiers from performance specifications and process parameters, and demonstrates the workability of the approach.","PeriodicalId":354586,"journal":{"name":"Papers on Twenty-five years of electronic design automation","volume":"180 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"90","resultStr":"{\"title\":\"A prototype framework for knowledge-based analog circuit synthesis\",\"authors\":\"R. Harjani, Rob A. Rutenbar, L. Carley\",\"doi\":\"10.1145/62882.62956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An organization for a knowledge-based analog circuit synthesis tool is described. Analog circuit topologies are represented as a hierarchy of functional blocks; a planning mechanism is introduced to translate performance specifications between levels in this circuit hierarchy. A prototype implementation, OASYS, synthesizes sized transistor schematics for simple CMOS operational amplifiers from performance specifications and process parameters, and demonstrates the workability of the approach.\",\"PeriodicalId\":354586,\"journal\":{\"name\":\"Papers on Twenty-five years of electronic design automation\",\"volume\":\"180 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"90\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Papers on Twenty-five years of electronic design automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/62882.62956\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Papers on Twenty-five years of electronic design automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/62882.62956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A prototype framework for knowledge-based analog circuit synthesis
An organization for a knowledge-based analog circuit synthesis tool is described. Analog circuit topologies are represented as a hierarchy of functional blocks; a planning mechanism is introduced to translate performance specifications between levels in this circuit hierarchy. A prototype implementation, OASYS, synthesizes sized transistor schematics for simple CMOS operational amplifiers from performance specifications and process parameters, and demonstrates the workability of the approach.