Sebastian Flinck Lindström, Markus Wetterberg, Niklas Carlsson
{"title":"云游戏:快节奏单人和多人游戏的QoE研究","authors":"Sebastian Flinck Lindström, Markus Wetterberg, Niklas Carlsson","doi":"10.1109/UCC48980.2020.00023","DOIUrl":null,"url":null,"abstract":"Cloud computing offers an attractive solution for modern computer games. By moving the increasingly demanding graphical calculations (e.g., generation of real-time video streams) to the cloud, consumers can play games using small, cheap devices. While cloud gaming has many advantages and is increasingly deployed, not much work has been done to understand the underlying factors impacting players’ user experience when moving the processing to the cloud. In this paper, we study the impact of the quality of service (QoS) factors most affecting the players’ quality of experience (QoE) and in-game performance. In particular, these relationships are studied from multiple perspectives using complementing analysis methods applied on the data collected via instrumented user tests. During the tests, we manipulated the players’ network conditions and collected low-level QoS metrics and in-game performance, and after each game, the users answered questions capturing their QoE. New insights are provided using different correlation/auto-correlation/cross-correlation statistics, regression models, and a thorough breakdown of the QoS metric most strongly correlated with the users’ QoE. We find that the frame age is the most important QoS metric for predicting in-game performance and QoE, and that spikes in the frame age caused by large frame transfers can have extended negative impact as they can cause processing backlogs. The study emphasizes the need to carefully consider and optimize the parts making up the frame age, including dependencies between the processing steps. By lowering the frame age, more enjoyable gaming experiences can be provided.","PeriodicalId":125849,"journal":{"name":"2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Cloud Gaming: A QoE Study of Fast-paced Single-player and Multiplayer Gaming\",\"authors\":\"Sebastian Flinck Lindström, Markus Wetterberg, Niklas Carlsson\",\"doi\":\"10.1109/UCC48980.2020.00023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cloud computing offers an attractive solution for modern computer games. By moving the increasingly demanding graphical calculations (e.g., generation of real-time video streams) to the cloud, consumers can play games using small, cheap devices. While cloud gaming has many advantages and is increasingly deployed, not much work has been done to understand the underlying factors impacting players’ user experience when moving the processing to the cloud. In this paper, we study the impact of the quality of service (QoS) factors most affecting the players’ quality of experience (QoE) and in-game performance. In particular, these relationships are studied from multiple perspectives using complementing analysis methods applied on the data collected via instrumented user tests. During the tests, we manipulated the players’ network conditions and collected low-level QoS metrics and in-game performance, and after each game, the users answered questions capturing their QoE. New insights are provided using different correlation/auto-correlation/cross-correlation statistics, regression models, and a thorough breakdown of the QoS metric most strongly correlated with the users’ QoE. We find that the frame age is the most important QoS metric for predicting in-game performance and QoE, and that spikes in the frame age caused by large frame transfers can have extended negative impact as they can cause processing backlogs. The study emphasizes the need to carefully consider and optimize the parts making up the frame age, including dependencies between the processing steps. By lowering the frame age, more enjoyable gaming experiences can be provided.\",\"PeriodicalId\":125849,\"journal\":{\"name\":\"2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UCC48980.2020.00023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UCC48980.2020.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cloud Gaming: A QoE Study of Fast-paced Single-player and Multiplayer Gaming
Cloud computing offers an attractive solution for modern computer games. By moving the increasingly demanding graphical calculations (e.g., generation of real-time video streams) to the cloud, consumers can play games using small, cheap devices. While cloud gaming has many advantages and is increasingly deployed, not much work has been done to understand the underlying factors impacting players’ user experience when moving the processing to the cloud. In this paper, we study the impact of the quality of service (QoS) factors most affecting the players’ quality of experience (QoE) and in-game performance. In particular, these relationships are studied from multiple perspectives using complementing analysis methods applied on the data collected via instrumented user tests. During the tests, we manipulated the players’ network conditions and collected low-level QoS metrics and in-game performance, and after each game, the users answered questions capturing their QoE. New insights are provided using different correlation/auto-correlation/cross-correlation statistics, regression models, and a thorough breakdown of the QoS metric most strongly correlated with the users’ QoE. We find that the frame age is the most important QoS metric for predicting in-game performance and QoE, and that spikes in the frame age caused by large frame transfers can have extended negative impact as they can cause processing backlogs. The study emphasizes the need to carefully consider and optimize the parts making up the frame age, including dependencies between the processing steps. By lowering the frame age, more enjoyable gaming experiences can be provided.