{"title":"用于工业等离子体应用的先进紧凑型等离子体传感器的新方法","authors":"C. Schulz, I. Rolfes","doi":"10.1109/SAS.2014.6798958","DOIUrl":null,"url":null,"abstract":"A novel compact plasma sensor applicable for the supervision and control of industrial plasma processes is presented in this contribution. Based on the multipole resonance probe (MRP), the new planar multipole resonance probe (pMRP) flush-mounted into the reactor wall can be used for an effective suppression of disruptions on the plasma process itself. Using 3D-electromagnetic field simulations, the MRP and the pMRP are investigated and compared. Furthermore, limitations concerning position tolerances are shown and the suitability is demonstrated.","PeriodicalId":125872,"journal":{"name":"2014 IEEE Sensors Applications Symposium (SAS)","volume":"315 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A new approach on advanced compact plasma sensors for industrial plasma applications\",\"authors\":\"C. Schulz, I. Rolfes\",\"doi\":\"10.1109/SAS.2014.6798958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel compact plasma sensor applicable for the supervision and control of industrial plasma processes is presented in this contribution. Based on the multipole resonance probe (MRP), the new planar multipole resonance probe (pMRP) flush-mounted into the reactor wall can be used for an effective suppression of disruptions on the plasma process itself. Using 3D-electromagnetic field simulations, the MRP and the pMRP are investigated and compared. Furthermore, limitations concerning position tolerances are shown and the suitability is demonstrated.\",\"PeriodicalId\":125872,\"journal\":{\"name\":\"2014 IEEE Sensors Applications Symposium (SAS)\",\"volume\":\"315 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Sensors Applications Symposium (SAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAS.2014.6798958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS.2014.6798958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new approach on advanced compact plasma sensors for industrial plasma applications
A novel compact plasma sensor applicable for the supervision and control of industrial plasma processes is presented in this contribution. Based on the multipole resonance probe (MRP), the new planar multipole resonance probe (pMRP) flush-mounted into the reactor wall can be used for an effective suppression of disruptions on the plasma process itself. Using 3D-electromagnetic field simulations, the MRP and the pMRP are investigated and compared. Furthermore, limitations concerning position tolerances are shown and the suitability is demonstrated.