基于广义对立学习的加速DE可扩展性测试

Hui Wang, Zhijian Wu, S. Rahnamayan, Lishan Kang
{"title":"基于广义对立学习的加速DE可扩展性测试","authors":"Hui Wang, Zhijian Wu, S. Rahnamayan, Lishan Kang","doi":"10.1109/ISDA.2009.216","DOIUrl":null,"url":null,"abstract":"In this paper a scalability test over eleven scalable benchmark functions, provided by the current workshop (Evolutionary Algorithms and other Metaheuristics for Continuous Optimization Problems - A Scalability Test), are conducted for accelerated DE using generalized opposition-based learning (GODE). The average error of the best individual in the population has been reported for dimensions 50, 100, 200, and 500 in order to compare with the results of other algorithms which are participating in this workshop. Current work is based on opposition-based differential evolution (ODE) and our previous work, accelerated PSO by generalized OBL.","PeriodicalId":330324,"journal":{"name":"2009 Ninth International Conference on Intelligent Systems Design and Applications","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"A Scalability Test for Accelerated DE Using Generalized Opposition-Based Learning\",\"authors\":\"Hui Wang, Zhijian Wu, S. Rahnamayan, Lishan Kang\",\"doi\":\"10.1109/ISDA.2009.216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a scalability test over eleven scalable benchmark functions, provided by the current workshop (Evolutionary Algorithms and other Metaheuristics for Continuous Optimization Problems - A Scalability Test), are conducted for accelerated DE using generalized opposition-based learning (GODE). The average error of the best individual in the population has been reported for dimensions 50, 100, 200, and 500 in order to compare with the results of other algorithms which are participating in this workshop. Current work is based on opposition-based differential evolution (ODE) and our previous work, accelerated PSO by generalized OBL.\",\"PeriodicalId\":330324,\"journal\":{\"name\":\"2009 Ninth International Conference on Intelligent Systems Design and Applications\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Ninth International Conference on Intelligent Systems Design and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2009.216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2009.216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

在本文中,使用基于广义对立的学习(GODE)对11个可扩展基准函数进行了可扩展性测试,这些可扩展性测试是由当前研讨会(连续优化问题的进化算法和其他元启发式-可扩展性测试)提供的。为了与参加本次研讨会的其他算法的结果进行比较,报告了维度50、100、200和500的最佳个体在总体中的平均误差。目前的工作是基于基于对立的差分进化(ODE)和我们之前的工作,通过广义OBL加速PSO。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Scalability Test for Accelerated DE Using Generalized Opposition-Based Learning
In this paper a scalability test over eleven scalable benchmark functions, provided by the current workshop (Evolutionary Algorithms and other Metaheuristics for Continuous Optimization Problems - A Scalability Test), are conducted for accelerated DE using generalized opposition-based learning (GODE). The average error of the best individual in the population has been reported for dimensions 50, 100, 200, and 500 in order to compare with the results of other algorithms which are participating in this workshop. Current work is based on opposition-based differential evolution (ODE) and our previous work, accelerated PSO by generalized OBL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信