基于深度学习模型的草图分类器技术在嵌入式系统中的实现

T. Tsai, Po-Ting Chi, Kuo-Hsing Cheng
{"title":"基于深度学习模型的草图分类器技术在嵌入式系统中的实现","authors":"T. Tsai, Po-Ting Chi, Kuo-Hsing Cheng","doi":"10.1109/DDECS.2019.8724656","DOIUrl":null,"url":null,"abstract":"Since 2011, due to the growth in the amount of information, the innovation of learning algorithms and the improvement of computer technology make the application of artificial intelligence feasible in a wide range of fields. This paper presents a sketch classifier technique with deep learning models. We use the depth-wise convolution layer to lighten the deep neural network. The result shows the improvement in approximately 1/5 of computation. We use Google Quick Draw dataset to train and evaluate the network, which can have 98% accuracy in 10 categories and 85% accuracy in 100 categories. Finally, we realize it on STM32F469I Discovery development board for demonstration. The system can achieve real-time implementation of sketch classification.","PeriodicalId":197053,"journal":{"name":"2019 IEEE 22nd International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Sketch Classifier Technique with Deep Learning Models Realized in an Embedded System\",\"authors\":\"T. Tsai, Po-Ting Chi, Kuo-Hsing Cheng\",\"doi\":\"10.1109/DDECS.2019.8724656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since 2011, due to the growth in the amount of information, the innovation of learning algorithms and the improvement of computer technology make the application of artificial intelligence feasible in a wide range of fields. This paper presents a sketch classifier technique with deep learning models. We use the depth-wise convolution layer to lighten the deep neural network. The result shows the improvement in approximately 1/5 of computation. We use Google Quick Draw dataset to train and evaluate the network, which can have 98% accuracy in 10 categories and 85% accuracy in 100 categories. Finally, we realize it on STM32F469I Discovery development board for demonstration. The system can achieve real-time implementation of sketch classification.\",\"PeriodicalId\":197053,\"journal\":{\"name\":\"2019 IEEE 22nd International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 22nd International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDECS.2019.8724656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 22nd International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDECS.2019.8724656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

2011年以来,由于信息量的增长,学习算法的创新和计算机技术的进步,使得人工智能在广泛领域的应用变得可行。本文提出了一种基于深度学习模型的草图分类器技术。我们使用深度卷积层来减轻深度神经网络。结果表明,改进后的计算量大约减少了1/5。我们使用谷歌Quick Draw数据集来训练和评估网络,该网络在10个类别中可以达到98%的准确率,在100个类别中可以达到85%的准确率。最后,我们在STM32F469I Discovery开发板上实现了该方法并进行了演示。该系统可以实现速写分类的实时实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Sketch Classifier Technique with Deep Learning Models Realized in an Embedded System
Since 2011, due to the growth in the amount of information, the innovation of learning algorithms and the improvement of computer technology make the application of artificial intelligence feasible in a wide range of fields. This paper presents a sketch classifier technique with deep learning models. We use the depth-wise convolution layer to lighten the deep neural network. The result shows the improvement in approximately 1/5 of computation. We use Google Quick Draw dataset to train and evaluate the network, which can have 98% accuracy in 10 categories and 85% accuracy in 100 categories. Finally, we realize it on STM32F469I Discovery development board for demonstration. The system can achieve real-time implementation of sketch classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信