WiFi- id:通过WiFi信号进行人类识别

Jin Zhang, Bo Wei, Wen Hu, S. Kanhere
{"title":"WiFi- id:通过WiFi信号进行人类识别","authors":"Jin Zhang, Bo Wei, Wen Hu, S. Kanhere","doi":"10.1109/DCOSS.2016.30","DOIUrl":null,"url":null,"abstract":"Prior research has shown the potential of device-free WiFi sensing for human activity recognition. In this paper, we show for the first time WiFi signals can also be used to uniquely identify people. There is strong evidence that suggests that all humans have a unique gait. An individual's gait will thus create unique perturbations in the WiFi spectrum. We propose a system called WiFi-ID that analyses the channel state information to extract unique features that are representative of the walking style of that individual and thus allow us to uniquely identify that person. We implement WiFi-ID on commercial off-the-shelf devices. We conduct extensive experiments to demonstrate that our system can uniquely identify people with average accuracy of 93% to 77% from a group of 2 to 6 people, respectively. We envisage that this technology can find many applications in small office or smart home settings.","PeriodicalId":217448,"journal":{"name":"2016 International Conference on Distributed Computing in Sensor Systems (DCOSS)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"191","resultStr":"{\"title\":\"WiFi-ID: Human Identification Using WiFi Signal\",\"authors\":\"Jin Zhang, Bo Wei, Wen Hu, S. Kanhere\",\"doi\":\"10.1109/DCOSS.2016.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prior research has shown the potential of device-free WiFi sensing for human activity recognition. In this paper, we show for the first time WiFi signals can also be used to uniquely identify people. There is strong evidence that suggests that all humans have a unique gait. An individual's gait will thus create unique perturbations in the WiFi spectrum. We propose a system called WiFi-ID that analyses the channel state information to extract unique features that are representative of the walking style of that individual and thus allow us to uniquely identify that person. We implement WiFi-ID on commercial off-the-shelf devices. We conduct extensive experiments to demonstrate that our system can uniquely identify people with average accuracy of 93% to 77% from a group of 2 to 6 people, respectively. We envisage that this technology can find many applications in small office or smart home settings.\",\"PeriodicalId\":217448,\"journal\":{\"name\":\"2016 International Conference on Distributed Computing in Sensor Systems (DCOSS)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"191\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Distributed Computing in Sensor Systems (DCOSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCOSS.2016.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Distributed Computing in Sensor Systems (DCOSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCOSS.2016.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 191

摘要

先前的研究表明,无设备WiFi传感在人类活动识别方面具有潜力。在本文中,我们首次展示了WiFi信号也可以用来唯一识别人。有强有力的证据表明,所有的人类都有独特的步态。因此,个人的步态将在WiFi频谱中产生独特的扰动。我们提出了一个叫做WiFi-ID的系统,它可以分析通道状态信息,提取出代表个人行走方式的独特特征,从而使我们能够唯一地识别那个人。我们在商用现成设备上实现WiFi-ID。我们进行了大量的实验,以证明我们的系统可以从2到6个人中识别出平均准确率为93%到77%的人。我们设想这项技术可以在小型办公室或智能家居环境中找到许多应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
WiFi-ID: Human Identification Using WiFi Signal
Prior research has shown the potential of device-free WiFi sensing for human activity recognition. In this paper, we show for the first time WiFi signals can also be used to uniquely identify people. There is strong evidence that suggests that all humans have a unique gait. An individual's gait will thus create unique perturbations in the WiFi spectrum. We propose a system called WiFi-ID that analyses the channel state information to extract unique features that are representative of the walking style of that individual and thus allow us to uniquely identify that person. We implement WiFi-ID on commercial off-the-shelf devices. We conduct extensive experiments to demonstrate that our system can uniquely identify people with average accuracy of 93% to 77% from a group of 2 to 6 people, respectively. We envisage that this technology can find many applications in small office or smart home settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信