{"title":"RV-2AJ五轴机器人机械手正运动学分析","authors":"M. A. Ayob, W. Zakaria, J. Jalani","doi":"10.1109/EECCIS.2014.7003725","DOIUrl":null,"url":null,"abstract":"This paper presents the forward kinematics analysis for the Mitsubishi Melfa RV-2AJ industrial robot with a five degree of freedom (DOF) revolute joints. The kinematics problem is defined as the transformation from the joint space to the Cartesian space and vice versa. An analytical solution using Denavit-Hartenberg (D-H) representation to describe the position and orientation of the robot end-effector is presented. Several lab experiments to verify the developed kinematics equations have been conducted. In this study, the developed kinematics solutions were found to be accurate (98.68%) compared to the real robot. These findings have important implication for developing dynamic simulation model that can be used to evaluate position and force control algorithm.","PeriodicalId":230688,"journal":{"name":"2014 Electrical Power, Electronics, Communicatons, Control and Informatics Seminar (EECCIS)","volume":"615 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Forward kinematics analysis of a 5-axis RV-2AJ robot manipulator\",\"authors\":\"M. A. Ayob, W. Zakaria, J. Jalani\",\"doi\":\"10.1109/EECCIS.2014.7003725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the forward kinematics analysis for the Mitsubishi Melfa RV-2AJ industrial robot with a five degree of freedom (DOF) revolute joints. The kinematics problem is defined as the transformation from the joint space to the Cartesian space and vice versa. An analytical solution using Denavit-Hartenberg (D-H) representation to describe the position and orientation of the robot end-effector is presented. Several lab experiments to verify the developed kinematics equations have been conducted. In this study, the developed kinematics solutions were found to be accurate (98.68%) compared to the real robot. These findings have important implication for developing dynamic simulation model that can be used to evaluate position and force control algorithm.\",\"PeriodicalId\":230688,\"journal\":{\"name\":\"2014 Electrical Power, Electronics, Communicatons, Control and Informatics Seminar (EECCIS)\",\"volume\":\"615 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Electrical Power, Electronics, Communicatons, Control and Informatics Seminar (EECCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EECCIS.2014.7003725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Electrical Power, Electronics, Communicatons, Control and Informatics Seminar (EECCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EECCIS.2014.7003725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Forward kinematics analysis of a 5-axis RV-2AJ robot manipulator
This paper presents the forward kinematics analysis for the Mitsubishi Melfa RV-2AJ industrial robot with a five degree of freedom (DOF) revolute joints. The kinematics problem is defined as the transformation from the joint space to the Cartesian space and vice versa. An analytical solution using Denavit-Hartenberg (D-H) representation to describe the position and orientation of the robot end-effector is presented. Several lab experiments to verify the developed kinematics equations have been conducted. In this study, the developed kinematics solutions were found to be accurate (98.68%) compared to the real robot. These findings have important implication for developing dynamic simulation model that can be used to evaluate position and force control algorithm.