强化学习

T. Trappenberg
{"title":"强化学习","authors":"T. Trappenberg","doi":"10.1093/oso/9780198828044.003.0010","DOIUrl":null,"url":null,"abstract":"The discussion here considers a much more common learning condition where an agent, such as a human or a robot, has to learn to make decisions in the environment from simple feedback. Such feedback is provided only after periods of actions in the form of reward or punishment without detailing which of the actions has contributed to the outcome. This type of learning scenario is called reinforcement learning. This learning problem is formalized in a Markov decision-making process with a variety of related algorithms. The second part of this chapter will use function approximators with neural networks which have made recent progress as deep reinforcement learning.","PeriodicalId":300420,"journal":{"name":"Fundamentals of Machine Learning","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinforcement learning\",\"authors\":\"T. Trappenberg\",\"doi\":\"10.1093/oso/9780198828044.003.0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The discussion here considers a much more common learning condition where an agent, such as a human or a robot, has to learn to make decisions in the environment from simple feedback. Such feedback is provided only after periods of actions in the form of reward or punishment without detailing which of the actions has contributed to the outcome. This type of learning scenario is called reinforcement learning. This learning problem is formalized in a Markov decision-making process with a variety of related algorithms. The second part of this chapter will use function approximators with neural networks which have made recent progress as deep reinforcement learning.\",\"PeriodicalId\":300420,\"journal\":{\"name\":\"Fundamentals of Machine Learning\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamentals of Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780198828044.003.0010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamentals of Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198828044.003.0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这里的讨论考虑了一种更常见的学习条件,即智能体(如人类或机器人)必须从简单的反馈中学习在环境中做出决策。这种反馈只会以奖励或惩罚的形式出现在一段时间后,而不会详细说明哪些行为促成了结果。这种类型的学习场景被称为强化学习。这个学习问题是形式化的马尔可夫决策过程与各种相关的算法。本章的第二部分将使用神经网络的函数逼近器,神经网络最近在深度强化学习方面取得了进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reinforcement learning
The discussion here considers a much more common learning condition where an agent, such as a human or a robot, has to learn to make decisions in the environment from simple feedback. Such feedback is provided only after periods of actions in the form of reward or punishment without detailing which of the actions has contributed to the outcome. This type of learning scenario is called reinforcement learning. This learning problem is formalized in a Markov decision-making process with a variety of related algorithms. The second part of this chapter will use function approximators with neural networks which have made recent progress as deep reinforcement learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信