基于遗传算法的LED照明系统多目标优化设计

Robert Martin C. Santiago, John Anthony C. Jose, A. Bandala, E. Dadios
{"title":"基于遗传算法的LED照明系统多目标优化设计","authors":"Robert Martin C. Santiago, John Anthony C. Jose, A. Bandala, E. Dadios","doi":"10.1109/ICOICT.2017.8074698","DOIUrl":null,"url":null,"abstract":"In order to maximize the advantages of LED lighting systems for controlled environment agriculture (CEA), several considerations must be taken into account such as the achievement of required daily light integral (DLI), uniform light distribution over the plant growing area, and minimize the investment and operating costs associated with the lighting system. This study aims to apply the multiple objective optimization of genetic algorithm in designing a lighting system that meets the mentioned objectives. The optimization variables, number of bits per variable and maximum number of iterations are fixed parameters tuned to the requirements of this application and the population size, mutation rate, and selection rate are genetic parameters for explorations. Results of the algorithm suggest the use of a number of LED lamps that is 31.25% lower than the maximum number of lamps that may be used in the plant growing area and, consequently, reduce the investment and operating costs while maintaining the required light integral capacity and uniformity. This and other studies that aim to develop and optimize LED lighting systems open more possibilities and promote the technology for controlled environment. Moreover, control and optimization of agricultural practices can lead to better plant quality and production even on locations and periods that they do not usually grow.","PeriodicalId":244500,"journal":{"name":"2017 5th International Conference on Information and Communication Technology (ICoIC7)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multiple objective optimization of LED lighting system design using genetic algorithm\",\"authors\":\"Robert Martin C. Santiago, John Anthony C. Jose, A. Bandala, E. Dadios\",\"doi\":\"10.1109/ICOICT.2017.8074698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to maximize the advantages of LED lighting systems for controlled environment agriculture (CEA), several considerations must be taken into account such as the achievement of required daily light integral (DLI), uniform light distribution over the plant growing area, and minimize the investment and operating costs associated with the lighting system. This study aims to apply the multiple objective optimization of genetic algorithm in designing a lighting system that meets the mentioned objectives. The optimization variables, number of bits per variable and maximum number of iterations are fixed parameters tuned to the requirements of this application and the population size, mutation rate, and selection rate are genetic parameters for explorations. Results of the algorithm suggest the use of a number of LED lamps that is 31.25% lower than the maximum number of lamps that may be used in the plant growing area and, consequently, reduce the investment and operating costs while maintaining the required light integral capacity and uniformity. This and other studies that aim to develop and optimize LED lighting systems open more possibilities and promote the technology for controlled environment. Moreover, control and optimization of agricultural practices can lead to better plant quality and production even on locations and periods that they do not usually grow.\",\"PeriodicalId\":244500,\"journal\":{\"name\":\"2017 5th International Conference on Information and Communication Technology (ICoIC7)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 5th International Conference on Information and Communication Technology (ICoIC7)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOICT.2017.8074698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Conference on Information and Communication Technology (ICoIC7)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOICT.2017.8074698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

为了最大限度地发挥LED照明系统在受控环境农业(CEA)中的优势,必须考虑几个因素,例如实现所需的每日光积分(DLI),在植物生长区域均匀分布光,并最大限度地减少与照明系统相关的投资和运营成本。本研究旨在应用遗传算法的多目标优化来设计满足上述目标的照明系统。优化变量、每个变量的位数和最大迭代次数是根据该应用程序的需求调整的固定参数,种群大小、突变率和选择率是用于探索的遗传参数。算法结果表明,在保持所需的光积分容量和均匀性的同时,使用的LED灯具数量比植物生长区域可使用的最大灯具数量少31.25%,从而减少投资和运行成本。这项研究和其他旨在开发和优化LED照明系统的研究为受控环境提供了更多的可能性,并促进了技术的发展。此外,控制和优化农业实践可以提高植物质量和产量,即使在它们通常不生长的地点和时期也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple objective optimization of LED lighting system design using genetic algorithm
In order to maximize the advantages of LED lighting systems for controlled environment agriculture (CEA), several considerations must be taken into account such as the achievement of required daily light integral (DLI), uniform light distribution over the plant growing area, and minimize the investment and operating costs associated with the lighting system. This study aims to apply the multiple objective optimization of genetic algorithm in designing a lighting system that meets the mentioned objectives. The optimization variables, number of bits per variable and maximum number of iterations are fixed parameters tuned to the requirements of this application and the population size, mutation rate, and selection rate are genetic parameters for explorations. Results of the algorithm suggest the use of a number of LED lamps that is 31.25% lower than the maximum number of lamps that may be used in the plant growing area and, consequently, reduce the investment and operating costs while maintaining the required light integral capacity and uniformity. This and other studies that aim to develop and optimize LED lighting systems open more possibilities and promote the technology for controlled environment. Moreover, control and optimization of agricultural practices can lead to better plant quality and production even on locations and periods that they do not usually grow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信