k-均值聚类问题的改进PTAS逼近算法

Wang Shou-qiang
{"title":"k-均值聚类问题的改进PTAS逼近算法","authors":"Wang Shou-qiang","doi":"10.1109/URKE.2012.6319592","DOIUrl":null,"url":null,"abstract":"This paper presented an improved (1+ε)-randomized approximation algorithm proposed by Ostrovsky. The running time of the improved algorithm is O(2(O(kα<sup>2</sup>/ε))nd), where d,n denote the dimension and the number of the input points respectively, and α(<;1) represents the separated coefficient. The successful probability is (1/2(1-e<sup>(1/2ε)</sup>))k(1-O(√α)). Compared to the original algorithm, the improved algorithm runs more efficiency.","PeriodicalId":277189,"journal":{"name":"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering","volume":"39 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An improved PTAS approximation algorithm for k-means clustering problem\",\"authors\":\"Wang Shou-qiang\",\"doi\":\"10.1109/URKE.2012.6319592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presented an improved (1+ε)-randomized approximation algorithm proposed by Ostrovsky. The running time of the improved algorithm is O(2(O(kα<sup>2</sup>/ε))nd), where d,n denote the dimension and the number of the input points respectively, and α(<;1) represents the separated coefficient. The successful probability is (1/2(1-e<sup>(1/2ε)</sup>))k(1-O(√α)). Compared to the original algorithm, the improved algorithm runs more efficiency.\",\"PeriodicalId\":277189,\"journal\":{\"name\":\"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering\",\"volume\":\"39 9\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/URKE.2012.6319592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URKE.2012.6319592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了Ostrovsky提出的一种改进的(1+ε)-随机逼近算法。改进算法的运行时间为O(2(O(kα2/ε))nd),其中d、n分别表示输入点的维数和个数,α((1/2ε)))k(1-O(√α))。与原算法相比,改进后的算法运行效率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved PTAS approximation algorithm for k-means clustering problem
This paper presented an improved (1+ε)-randomized approximation algorithm proposed by Ostrovsky. The running time of the improved algorithm is O(2(O(kα2/ε))nd), where d,n denote the dimension and the number of the input points respectively, and α(<;1) represents the separated coefficient. The successful probability is (1/2(1-e(1/2ε)))k(1-O(√α)). Compared to the original algorithm, the improved algorithm runs more efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信