基于多尺度散射和稀疏表示的音乐类型分类

Xu Chen, P. Ramadge
{"title":"基于多尺度散射和稀疏表示的音乐类型分类","authors":"Xu Chen, P. Ramadge","doi":"10.1109/CISS.2013.6552324","DOIUrl":null,"url":null,"abstract":"An effective music genre classication approach is proposed that combines the translation-invariance and deformation-robustness property of scattering coefficients and the discriminative power of sparse representation-based classifiers. We argue that these two approaches to feature selection and classification complement each other in reducing the in-class variability of data, and this should lead to enhanced performance. Our results show clear improvement over a variety of previous approaches. A music genre classication accuracy of approximately 91.2% on the GTZAN database is reported.","PeriodicalId":268095,"journal":{"name":"2013 47th Annual Conference on Information Sciences and Systems (CISS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Music genre classification using multiscale scattering and sparse representations\",\"authors\":\"Xu Chen, P. Ramadge\",\"doi\":\"10.1109/CISS.2013.6552324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An effective music genre classication approach is proposed that combines the translation-invariance and deformation-robustness property of scattering coefficients and the discriminative power of sparse representation-based classifiers. We argue that these two approaches to feature selection and classification complement each other in reducing the in-class variability of data, and this should lead to enhanced performance. Our results show clear improvement over a variety of previous approaches. A music genre classication accuracy of approximately 91.2% on the GTZAN database is reported.\",\"PeriodicalId\":268095,\"journal\":{\"name\":\"2013 47th Annual Conference on Information Sciences and Systems (CISS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 47th Annual Conference on Information Sciences and Systems (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS.2013.6552324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 47th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2013.6552324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

将散射系数的平移不变性和变形鲁棒性与基于稀疏表示的分类器的判别能力相结合,提出了一种有效的音乐类型分类方法。我们认为这两种特征选择和分类方法在减少数据的类内可变性方面是互补的,这应该会提高性能。我们的结果表明,与以前的各种方法相比,这种方法有了明显的改进。据报道,GTZAN数据库的音乐类型分类准确率约为91.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Music genre classification using multiscale scattering and sparse representations
An effective music genre classication approach is proposed that combines the translation-invariance and deformation-robustness property of scattering coefficients and the discriminative power of sparse representation-based classifiers. We argue that these two approaches to feature selection and classification complement each other in reducing the in-class variability of data, and this should lead to enhanced performance. Our results show clear improvement over a variety of previous approaches. A music genre classication accuracy of approximately 91.2% on the GTZAN database is reported.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信