Jung-Soo Chung, Young-Sik Kim, Tae-Hyung Lim, Jong-Seon No, Habong Chung
{"title":"5阶分环数/ F/ p//sup n/","authors":"Jung-Soo Chung, Young-Sik Kim, Tae-Hyung Lim, Jong-Seon No, Habong Chung","doi":"10.1109/ISIT.2005.1523688","DOIUrl":null,"url":null,"abstract":"In this paper, we derive the cyclotomic numbers of order 5 over an extension field F<sub>p</sub> <sup>n</sup> using the well-known results of quintic Jacobi sums over F<sub>p</sub> (B. C. Berndt, et al., 1998). For p ne 1 mod 5, we have obtained the simple closed-form expression of the cyclotomic numbers of order 5 over F<sub>p</sub> <sup>n</sup>. For p equiv 1 mod 5, we express the cyclotomic number of order 5 over F <sub>p</sub> <sup>n</sup> in terms of the solution of the diophantine system which is required to evaluate the cyclotomic number of order 5 over F<sub>p</sub> <sup>n</sup>. Using the cyclotomic numbers of order 5 over F<sub>p</sub> <sup>n</sup>, autocorrelation distributions of 5-ary Sidel'nikov sequences of period p<sup>n</sup> - 1 are also derived","PeriodicalId":166130,"journal":{"name":"Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.","volume":"282 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cyclotomic numbers of order 5 over F/sub p//sup n/\",\"authors\":\"Jung-Soo Chung, Young-Sik Kim, Tae-Hyung Lim, Jong-Seon No, Habong Chung\",\"doi\":\"10.1109/ISIT.2005.1523688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we derive the cyclotomic numbers of order 5 over an extension field F<sub>p</sub> <sup>n</sup> using the well-known results of quintic Jacobi sums over F<sub>p</sub> (B. C. Berndt, et al., 1998). For p ne 1 mod 5, we have obtained the simple closed-form expression of the cyclotomic numbers of order 5 over F<sub>p</sub> <sup>n</sup>. For p equiv 1 mod 5, we express the cyclotomic number of order 5 over F <sub>p</sub> <sup>n</sup> in terms of the solution of the diophantine system which is required to evaluate the cyclotomic number of order 5 over F<sub>p</sub> <sup>n</sup>. Using the cyclotomic numbers of order 5 over F<sub>p</sub> <sup>n</sup>, autocorrelation distributions of 5-ary Sidel'nikov sequences of period p<sup>n</sup> - 1 are also derived\",\"PeriodicalId\":166130,\"journal\":{\"name\":\"Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.\",\"volume\":\"282 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2005.1523688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2005.1523688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们利用著名的Fp上的五次Jacobi和的结果(b.c.b Berndt, et al., 1998),导出了扩展域Fp n上5阶的环切数。pne 1国防部5,我们获得的简单的封闭表达式分圆的数量的订单5 / Fp n。p 1国防部5枚,我们表达的割圆数量订购5 / F p n的丢番图系统的解决方案,需要评估分圆的数量的订单5 / Fp n。使用分圆的数量的订单5 / Fp n,自相关分布5-ary Sidel 'nikov pn - 1序列也派生
Cyclotomic numbers of order 5 over F/sub p//sup n/
In this paper, we derive the cyclotomic numbers of order 5 over an extension field Fpn using the well-known results of quintic Jacobi sums over Fp (B. C. Berndt, et al., 1998). For p ne 1 mod 5, we have obtained the simple closed-form expression of the cyclotomic numbers of order 5 over Fpn. For p equiv 1 mod 5, we express the cyclotomic number of order 5 over F pn in terms of the solution of the diophantine system which is required to evaluate the cyclotomic number of order 5 over Fpn. Using the cyclotomic numbers of order 5 over Fpn, autocorrelation distributions of 5-ary Sidel'nikov sequences of period pn - 1 are also derived