新颖性增强的贝叶斯个性化排名

Jacek Wasilewski, N. Hurley
{"title":"新颖性增强的贝叶斯个性化排名","authors":"Jacek Wasilewski, N. Hurley","doi":"10.1145/3320435.3320468","DOIUrl":null,"url":null,"abstract":"Novelty enhancement of recommendations is typically achieved through a post-filtering process applied on a candidate set of items. While it is an effective method, its performance heavily depends on the quality of a baseline algorithm, and many of the state-of-the-art algorithms generate recommendations that are relatively similar to what the user has interacted with in the past. In this paper we explore the use of sampling as a means of novelty enhancement in the Bayesian Personalized Ranking objective. We evaluate the proposed extensions on the MovieLens 20M dataset, and show that the proposed method can be successfully used instead of two-step reranking, as it offers comparable and better accuracy/novelty tradeoffs, and more unique recommendations.","PeriodicalId":254537,"journal":{"name":"Proceedings of the 27th ACM Conference on User Modeling, Adaptation and Personalization","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Bayesian Personalized Ranking for Novelty Enhancement\",\"authors\":\"Jacek Wasilewski, N. Hurley\",\"doi\":\"10.1145/3320435.3320468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Novelty enhancement of recommendations is typically achieved through a post-filtering process applied on a candidate set of items. While it is an effective method, its performance heavily depends on the quality of a baseline algorithm, and many of the state-of-the-art algorithms generate recommendations that are relatively similar to what the user has interacted with in the past. In this paper we explore the use of sampling as a means of novelty enhancement in the Bayesian Personalized Ranking objective. We evaluate the proposed extensions on the MovieLens 20M dataset, and show that the proposed method can be successfully used instead of two-step reranking, as it offers comparable and better accuracy/novelty tradeoffs, and more unique recommendations.\",\"PeriodicalId\":254537,\"journal\":{\"name\":\"Proceedings of the 27th ACM Conference on User Modeling, Adaptation and Personalization\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 27th ACM Conference on User Modeling, Adaptation and Personalization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3320435.3320468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th ACM Conference on User Modeling, Adaptation and Personalization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3320435.3320468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

推荐的新颖性增强通常是通过对候选项集应用后过滤过程来实现的。虽然它是一种有效的方法,但它的性能在很大程度上取决于基线算法的质量,并且许多最先进的算法生成的推荐与用户过去与之交互的内容相对相似。在本文中,我们探讨了在贝叶斯个性化排名目标中使用抽样作为新颖性增强的手段。我们在MovieLens 20M数据集上评估了所提出的扩展,并表明所提出的方法可以成功地取代两步重新排序,因为它提供了可比性和更好的准确性/新颖性权衡,以及更独特的推荐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Personalized Ranking for Novelty Enhancement
Novelty enhancement of recommendations is typically achieved through a post-filtering process applied on a candidate set of items. While it is an effective method, its performance heavily depends on the quality of a baseline algorithm, and many of the state-of-the-art algorithms generate recommendations that are relatively similar to what the user has interacted with in the past. In this paper we explore the use of sampling as a means of novelty enhancement in the Bayesian Personalized Ranking objective. We evaluate the proposed extensions on the MovieLens 20M dataset, and show that the proposed method can be successfully used instead of two-step reranking, as it offers comparable and better accuracy/novelty tradeoffs, and more unique recommendations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信