{"title":"合作博弈理论中多面体锥体的面格","authors":"Norman L. Kleinberg","doi":"10.2139/ssrn.3197585","DOIUrl":null,"url":null,"abstract":"Whether or not a given cooperative game with transferable utility is balanced; i.e. possesses a nonempty core, is a central question in the literature. The answer was furnished, independently, by Bondareva (In Vestnik Leningradskii Universitet, in Russian, 13:141–142, 1962) and Shapley (Nav Res Logist Q 14:453–460, 1967), who provided necessary and sufficient conditions in the form of a set of linear inequalities involving the game’s characteristic function. The purpose of this paper is to show how these inequalities arise naturally from the representation of a certain polyhedral cone as the intersection of half spaces. In the course of doing so we also show how each balanced collection of subsets corresponds to the complement of a face of the cone and how the set of coalitional excesses of a game coincides with its set of combination vectors. Finally, we utilize our framework to prove a notable result of Keane (Ph.D. Dissertation, Field of Math, Northwestern University, Evanston) concerning the L1-center of a cooperative game.","PeriodicalId":373527,"journal":{"name":"PSN: Game Theory (Topic)","volume":"276 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Face Lattice of Polyhedral Cones in the Theory of Cooperative Games\",\"authors\":\"Norman L. Kleinberg\",\"doi\":\"10.2139/ssrn.3197585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Whether or not a given cooperative game with transferable utility is balanced; i.e. possesses a nonempty core, is a central question in the literature. The answer was furnished, independently, by Bondareva (In Vestnik Leningradskii Universitet, in Russian, 13:141–142, 1962) and Shapley (Nav Res Logist Q 14:453–460, 1967), who provided necessary and sufficient conditions in the form of a set of linear inequalities involving the game’s characteristic function. The purpose of this paper is to show how these inequalities arise naturally from the representation of a certain polyhedral cone as the intersection of half spaces. In the course of doing so we also show how each balanced collection of subsets corresponds to the complement of a face of the cone and how the set of coalitional excesses of a game coincides with its set of combination vectors. Finally, we utilize our framework to prove a notable result of Keane (Ph.D. Dissertation, Field of Math, Northwestern University, Evanston) concerning the L1-center of a cooperative game.\",\"PeriodicalId\":373527,\"journal\":{\"name\":\"PSN: Game Theory (Topic)\",\"volume\":\"276 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PSN: Game Theory (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3197585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSN: Game Theory (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3197585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Face Lattice of Polyhedral Cones in the Theory of Cooperative Games
Whether or not a given cooperative game with transferable utility is balanced; i.e. possesses a nonempty core, is a central question in the literature. The answer was furnished, independently, by Bondareva (In Vestnik Leningradskii Universitet, in Russian, 13:141–142, 1962) and Shapley (Nav Res Logist Q 14:453–460, 1967), who provided necessary and sufficient conditions in the form of a set of linear inequalities involving the game’s characteristic function. The purpose of this paper is to show how these inequalities arise naturally from the representation of a certain polyhedral cone as the intersection of half spaces. In the course of doing so we also show how each balanced collection of subsets corresponds to the complement of a face of the cone and how the set of coalitional excesses of a game coincides with its set of combination vectors. Finally, we utilize our framework to prove a notable result of Keane (Ph.D. Dissertation, Field of Math, Northwestern University, Evanston) concerning the L1-center of a cooperative game.