{"title":"渐近锐化$s$-哈密顿指数界","authors":"Sulin Song, Lan Lei, Yehong Shao, H. Lai","doi":"10.46298/dmtcs.8484","DOIUrl":null,"url":null,"abstract":"For a non-negative integer $s\\le |V(G)|-3$, a graph $G$ is $s$-Hamiltonian if\nthe removal of any $k\\le s$ vertices results in a Hamiltonian graph. Given a\nconnected simple graph $G$ that is not isomorphic to a path, a cycle, or a\n$K_{1,3}$, let $\\delta(G)$ denote the minimum degree of $G$, let $h_s(G)$\ndenote the smallest integer $i$ such that the iterated line graph $L^{i}(G)$ is\n$s$-Hamiltonian, and let $\\ell(G)$ denote the length of the longest non-closed\npath $P$ in which all internal vertices have degree 2 such that $P$ is not both\nof length 2 and in a $K_3$. For a simple graph $G$, we establish better upper\nbounds for $h_s(G)$ as follows. \\begin{equation*} h_s(G)\\le \\left\\{\n\\begin{aligned} & \\ell(G)+1, &&\\mbox{ if }\\delta(G)\\le 2 \\mbox{ and }s=0;\\\\ &\n\\widetilde d(G)+2+\\lceil \\lg (s+1)\\rceil, &&\\mbox{ if }\\delta(G)\\le 2 \\mbox{\nand }s\\ge 1;\\\\ & 2+\\left\\lceil\\lg\\frac{s+1}{\\delta(G)-2}\\right\\rceil, && \\mbox{\nif } 3\\le\\delta(G)\\le s+2;\\\\ & 2, &&{\\rm otherwise}, \\end{aligned} \\right.\n\\end{equation*} where $\\widetilde d(G)$ is the smallest integer $i$ such that\n$\\delta(L^i(G))\\ge 3$. Consequently, when $s \\ge 6$, this new upper bound for\nthe $s$-hamiltonian index implies that $h_s(G) = o(\\ell(G)+s+1)$ as $s \\to\n\\infty$. This sharpens the result, $h_s(G)\\le\\ell(G)+s+1$, obtained by Zhang et\nal. in [Discrete Math., 308 (2008) 4779-4785].","PeriodicalId":110830,"journal":{"name":"Discret. Math. Theor. Comput. Sci.","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Asymptotically sharpening the $s$-Hamiltonian index bound\",\"authors\":\"Sulin Song, Lan Lei, Yehong Shao, H. Lai\",\"doi\":\"10.46298/dmtcs.8484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a non-negative integer $s\\\\le |V(G)|-3$, a graph $G$ is $s$-Hamiltonian if\\nthe removal of any $k\\\\le s$ vertices results in a Hamiltonian graph. Given a\\nconnected simple graph $G$ that is not isomorphic to a path, a cycle, or a\\n$K_{1,3}$, let $\\\\delta(G)$ denote the minimum degree of $G$, let $h_s(G)$\\ndenote the smallest integer $i$ such that the iterated line graph $L^{i}(G)$ is\\n$s$-Hamiltonian, and let $\\\\ell(G)$ denote the length of the longest non-closed\\npath $P$ in which all internal vertices have degree 2 such that $P$ is not both\\nof length 2 and in a $K_3$. For a simple graph $G$, we establish better upper\\nbounds for $h_s(G)$ as follows. \\\\begin{equation*} h_s(G)\\\\le \\\\left\\\\{\\n\\\\begin{aligned} & \\\\ell(G)+1, &&\\\\mbox{ if }\\\\delta(G)\\\\le 2 \\\\mbox{ and }s=0;\\\\\\\\ &\\n\\\\widetilde d(G)+2+\\\\lceil \\\\lg (s+1)\\\\rceil, &&\\\\mbox{ if }\\\\delta(G)\\\\le 2 \\\\mbox{\\nand }s\\\\ge 1;\\\\\\\\ & 2+\\\\left\\\\lceil\\\\lg\\\\frac{s+1}{\\\\delta(G)-2}\\\\right\\\\rceil, && \\\\mbox{\\nif } 3\\\\le\\\\delta(G)\\\\le s+2;\\\\\\\\ & 2, &&{\\\\rm otherwise}, \\\\end{aligned} \\\\right.\\n\\\\end{equation*} where $\\\\widetilde d(G)$ is the smallest integer $i$ such that\\n$\\\\delta(L^i(G))\\\\ge 3$. Consequently, when $s \\\\ge 6$, this new upper bound for\\nthe $s$-hamiltonian index implies that $h_s(G) = o(\\\\ell(G)+s+1)$ as $s \\\\to\\n\\\\infty$. This sharpens the result, $h_s(G)\\\\le\\\\ell(G)+s+1$, obtained by Zhang et\\nal. in [Discrete Math., 308 (2008) 4779-4785].\",\"PeriodicalId\":110830,\"journal\":{\"name\":\"Discret. Math. Theor. Comput. Sci.\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discret. Math. Theor. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/dmtcs.8484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discret. Math. Theor. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/dmtcs.8484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Asymptotically sharpening the $s$-Hamiltonian index bound
For a non-negative integer $s\le |V(G)|-3$, a graph $G$ is $s$-Hamiltonian if
the removal of any $k\le s$ vertices results in a Hamiltonian graph. Given a
connected simple graph $G$ that is not isomorphic to a path, a cycle, or a
$K_{1,3}$, let $\delta(G)$ denote the minimum degree of $G$, let $h_s(G)$
denote the smallest integer $i$ such that the iterated line graph $L^{i}(G)$ is
$s$-Hamiltonian, and let $\ell(G)$ denote the length of the longest non-closed
path $P$ in which all internal vertices have degree 2 such that $P$ is not both
of length 2 and in a $K_3$. For a simple graph $G$, we establish better upper
bounds for $h_s(G)$ as follows. \begin{equation*} h_s(G)\le \left\{
\begin{aligned} & \ell(G)+1, &&\mbox{ if }\delta(G)\le 2 \mbox{ and }s=0;\\ &
\widetilde d(G)+2+\lceil \lg (s+1)\rceil, &&\mbox{ if }\delta(G)\le 2 \mbox{
and }s\ge 1;\\ & 2+\left\lceil\lg\frac{s+1}{\delta(G)-2}\right\rceil, && \mbox{
if } 3\le\delta(G)\le s+2;\\ & 2, &&{\rm otherwise}, \end{aligned} \right.
\end{equation*} where $\widetilde d(G)$ is the smallest integer $i$ such that
$\delta(L^i(G))\ge 3$. Consequently, when $s \ge 6$, this new upper bound for
the $s$-hamiltonian index implies that $h_s(G) = o(\ell(G)+s+1)$ as $s \to
\infty$. This sharpens the result, $h_s(G)\le\ell(G)+s+1$, obtained by Zhang et
al. in [Discrete Math., 308 (2008) 4779-4785].