半局部Hurst估计的分段参数化马尔可夫随机场

Jean-Baptiste Regli, J. Nelson
{"title":"半局部Hurst估计的分段参数化马尔可夫随机场","authors":"Jean-Baptiste Regli, J. Nelson","doi":"10.1109/EUSIPCO.2015.7362659","DOIUrl":null,"url":null,"abstract":"Semi-local Hurst estimation is considered by incorporating a Markov random field model to constrain a wavelet-based pointwise Hurst estimator. This results in an estimator which is able to exploit the spatial regularities of a piecewise parametric varying Hurst parameter. The pointwise estimates are jointly inferred along with the parametric form of the underlying Hurst function which characterises how the Hurst parameter varies deterministically over the spatial support of the data. Unlike recent Hurst regularisation methods, the proposed approach is flexible in that arbitrary parametric forms can be considered and is extensible in as much as the associated gradient descent algorithm can accommodate a broad class of distributional assumptions without any significant modifications. The potential benefits of the approach are illustrated with simulations of various first-order polynomial forms.","PeriodicalId":401040,"journal":{"name":"2015 23rd European Signal Processing Conference (EUSIPCO)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Piecewise parameterised Markov random fields for semi-local Hurst estimation\",\"authors\":\"Jean-Baptiste Regli, J. Nelson\",\"doi\":\"10.1109/EUSIPCO.2015.7362659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semi-local Hurst estimation is considered by incorporating a Markov random field model to constrain a wavelet-based pointwise Hurst estimator. This results in an estimator which is able to exploit the spatial regularities of a piecewise parametric varying Hurst parameter. The pointwise estimates are jointly inferred along with the parametric form of the underlying Hurst function which characterises how the Hurst parameter varies deterministically over the spatial support of the data. Unlike recent Hurst regularisation methods, the proposed approach is flexible in that arbitrary parametric forms can be considered and is extensible in as much as the associated gradient descent algorithm can accommodate a broad class of distributional assumptions without any significant modifications. The potential benefits of the approach are illustrated with simulations of various first-order polynomial forms.\",\"PeriodicalId\":401040,\"journal\":{\"name\":\"2015 23rd European Signal Processing Conference (EUSIPCO)\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 23rd European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUSIPCO.2015.7362659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2015.7362659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

利用马尔可夫随机场模型约束基于小波的点向Hurst估计,考虑了半局部Hurst估计。这就得到了一个能够利用分段参数变化的赫斯特参数的空间规律的估计量。逐点估计与底层Hurst函数的参数形式共同推断,该函数表征Hurst参数如何在数据的空间支持上确定性地变化。与最近的Hurst正则化方法不同,所提出的方法具有灵活性,可以考虑任意参数形式,并且可以扩展,因为相关的梯度下降算法可以在不进行任何重大修改的情况下适应广泛的分布假设。通过各种一阶多项式形式的仿真说明了该方法的潜在优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Piecewise parameterised Markov random fields for semi-local Hurst estimation
Semi-local Hurst estimation is considered by incorporating a Markov random field model to constrain a wavelet-based pointwise Hurst estimator. This results in an estimator which is able to exploit the spatial regularities of a piecewise parametric varying Hurst parameter. The pointwise estimates are jointly inferred along with the parametric form of the underlying Hurst function which characterises how the Hurst parameter varies deterministically over the spatial support of the data. Unlike recent Hurst regularisation methods, the proposed approach is flexible in that arbitrary parametric forms can be considered and is extensible in as much as the associated gradient descent algorithm can accommodate a broad class of distributional assumptions without any significant modifications. The potential benefits of the approach are illustrated with simulations of various first-order polynomial forms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信