{"title":"半局部Hurst估计的分段参数化马尔可夫随机场","authors":"Jean-Baptiste Regli, J. Nelson","doi":"10.1109/EUSIPCO.2015.7362659","DOIUrl":null,"url":null,"abstract":"Semi-local Hurst estimation is considered by incorporating a Markov random field model to constrain a wavelet-based pointwise Hurst estimator. This results in an estimator which is able to exploit the spatial regularities of a piecewise parametric varying Hurst parameter. The pointwise estimates are jointly inferred along with the parametric form of the underlying Hurst function which characterises how the Hurst parameter varies deterministically over the spatial support of the data. Unlike recent Hurst regularisation methods, the proposed approach is flexible in that arbitrary parametric forms can be considered and is extensible in as much as the associated gradient descent algorithm can accommodate a broad class of distributional assumptions without any significant modifications. The potential benefits of the approach are illustrated with simulations of various first-order polynomial forms.","PeriodicalId":401040,"journal":{"name":"2015 23rd European Signal Processing Conference (EUSIPCO)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Piecewise parameterised Markov random fields for semi-local Hurst estimation\",\"authors\":\"Jean-Baptiste Regli, J. Nelson\",\"doi\":\"10.1109/EUSIPCO.2015.7362659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semi-local Hurst estimation is considered by incorporating a Markov random field model to constrain a wavelet-based pointwise Hurst estimator. This results in an estimator which is able to exploit the spatial regularities of a piecewise parametric varying Hurst parameter. The pointwise estimates are jointly inferred along with the parametric form of the underlying Hurst function which characterises how the Hurst parameter varies deterministically over the spatial support of the data. Unlike recent Hurst regularisation methods, the proposed approach is flexible in that arbitrary parametric forms can be considered and is extensible in as much as the associated gradient descent algorithm can accommodate a broad class of distributional assumptions without any significant modifications. The potential benefits of the approach are illustrated with simulations of various first-order polynomial forms.\",\"PeriodicalId\":401040,\"journal\":{\"name\":\"2015 23rd European Signal Processing Conference (EUSIPCO)\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 23rd European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUSIPCO.2015.7362659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2015.7362659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Piecewise parameterised Markov random fields for semi-local Hurst estimation
Semi-local Hurst estimation is considered by incorporating a Markov random field model to constrain a wavelet-based pointwise Hurst estimator. This results in an estimator which is able to exploit the spatial regularities of a piecewise parametric varying Hurst parameter. The pointwise estimates are jointly inferred along with the parametric form of the underlying Hurst function which characterises how the Hurst parameter varies deterministically over the spatial support of the data. Unlike recent Hurst regularisation methods, the proposed approach is flexible in that arbitrary parametric forms can be considered and is extensible in as much as the associated gradient descent algorithm can accommodate a broad class of distributional assumptions without any significant modifications. The potential benefits of the approach are illustrated with simulations of various first-order polynomial forms.