结构敏感型功率led紧凑型热模型

K. Kuzniak, K. Szymanska, Ł. Starzak, M. Janicki
{"title":"结构敏感型功率led紧凑型热模型","authors":"K. Kuzniak, K. Szymanska, Ł. Starzak, M. Janicki","doi":"10.14311/isps.2021.022","DOIUrl":null,"url":null,"abstract":"This paper based on the example of white power LEDs illustrates the methodology for the generation of device compact thermal models, whose element values can be assigned physical meaning. The diode thermal behaviour was studied both with the forced water cooling and with the natural convection air cooling. Moreover, owing to the fact that the investigated devices had an electrically isolated thermal pad, the measurements were carried out with the thermal pad properly soldered and with the pad left unconnected, what facilitated the identification of particular sections in the heat flow path. All the measurements of device heating or cooling curves were taken according to the JEDEC standards. The determination of the optical power allowed the computation of the real heating power, which was used then as the input quantity for thermal computations and analyses presented in this paper. Based on the measurement results, thermal structure functions and time constant spectra were computed using the Network Identification by Deconvolution method. The compact thermal models of the investigated LEDs were derived based on the time constant spectra. Owing to the proposed methodology, it was possible to attribute physical meaning to model element values. The accuracy of generated compact models was validated by comparing the simulated heating curves with the measured ones. Although the compact models for the investigated cases consisted only of four RC stages, they provided excellent simulation accuracy with errors below 4% of the maximum temperature rise value.","PeriodicalId":125960,"journal":{"name":"ISPS'21 Proceedings","volume":"2012 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure-Aware Compact Thermal Models of Power LEDs\",\"authors\":\"K. Kuzniak, K. Szymanska, Ł. Starzak, M. Janicki\",\"doi\":\"10.14311/isps.2021.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper based on the example of white power LEDs illustrates the methodology for the generation of device compact thermal models, whose element values can be assigned physical meaning. The diode thermal behaviour was studied both with the forced water cooling and with the natural convection air cooling. Moreover, owing to the fact that the investigated devices had an electrically isolated thermal pad, the measurements were carried out with the thermal pad properly soldered and with the pad left unconnected, what facilitated the identification of particular sections in the heat flow path. All the measurements of device heating or cooling curves were taken according to the JEDEC standards. The determination of the optical power allowed the computation of the real heating power, which was used then as the input quantity for thermal computations and analyses presented in this paper. Based on the measurement results, thermal structure functions and time constant spectra were computed using the Network Identification by Deconvolution method. The compact thermal models of the investigated LEDs were derived based on the time constant spectra. Owing to the proposed methodology, it was possible to attribute physical meaning to model element values. The accuracy of generated compact models was validated by comparing the simulated heating curves with the measured ones. Although the compact models for the investigated cases consisted only of four RC stages, they provided excellent simulation accuracy with errors below 4% of the maximum temperature rise value.\",\"PeriodicalId\":125960,\"journal\":{\"name\":\"ISPS'21 Proceedings\",\"volume\":\"2012 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPS'21 Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14311/isps.2021.022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPS'21 Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14311/isps.2021.022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structure-Aware Compact Thermal Models of Power LEDs
This paper based on the example of white power LEDs illustrates the methodology for the generation of device compact thermal models, whose element values can be assigned physical meaning. The diode thermal behaviour was studied both with the forced water cooling and with the natural convection air cooling. Moreover, owing to the fact that the investigated devices had an electrically isolated thermal pad, the measurements were carried out with the thermal pad properly soldered and with the pad left unconnected, what facilitated the identification of particular sections in the heat flow path. All the measurements of device heating or cooling curves were taken according to the JEDEC standards. The determination of the optical power allowed the computation of the real heating power, which was used then as the input quantity for thermal computations and analyses presented in this paper. Based on the measurement results, thermal structure functions and time constant spectra were computed using the Network Identification by Deconvolution method. The compact thermal models of the investigated LEDs were derived based on the time constant spectra. Owing to the proposed methodology, it was possible to attribute physical meaning to model element values. The accuracy of generated compact models was validated by comparing the simulated heating curves with the measured ones. Although the compact models for the investigated cases consisted only of four RC stages, they provided excellent simulation accuracy with errors below 4% of the maximum temperature rise value.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信