改进了曲面上图形的乘积结构

Marc Distel, Robert Hickingbotham, T. Huynh, D. Wood
{"title":"改进了曲面上图形的乘积结构","authors":"Marc Distel, Robert Hickingbotham, T. Huynh, D. Wood","doi":"10.46298/dmtcs.8877","DOIUrl":null,"url":null,"abstract":"Dujmovi\\'c, Joret, Micek, Morin, Ueckerdt and Wood [J. ACM 2020] proved that for every graph $G$ with Euler genus $g$ there is a graph $H$ with treewidth at most 4 and a path $P$ such that $G\\subseteq H \\boxtimes P \\boxtimes K_{\\max\\{2g,3\\}}$. We improve this result by replacing \"4\" by \"3\" and with $H$ planar. We in fact prove a more general result in terms of so-called framed graphs. This implies that every $(g,d)$-map graph is contained in $ H \\boxtimes P\\boxtimes K_\\ell$, for some planar graph $H$ with treewidth $3$, where $\\ell=\\max\\{2g\\lfloor \\frac{d}{2} \\rfloor,d+3\\lfloor\\frac{d}{2}\\rfloor-3\\}$. It also implies that every $(g,1)$-planar graph (that is, graphs that can be drawn in a surface of Euler genus $g$ with at most one crossing per edge) is contained in $H\\boxtimes P\\boxtimes K_{\\max\\{4g,7\\}}$, for some planar graph $H$ with treewidth $3$.","PeriodicalId":110830,"journal":{"name":"Discret. Math. Theor. Comput. Sci.","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Improved product structure for graphs on surfaces\",\"authors\":\"Marc Distel, Robert Hickingbotham, T. Huynh, D. Wood\",\"doi\":\"10.46298/dmtcs.8877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dujmovi\\\\'c, Joret, Micek, Morin, Ueckerdt and Wood [J. ACM 2020] proved that for every graph $G$ with Euler genus $g$ there is a graph $H$ with treewidth at most 4 and a path $P$ such that $G\\\\subseteq H \\\\boxtimes P \\\\boxtimes K_{\\\\max\\\\{2g,3\\\\}}$. We improve this result by replacing \\\"4\\\" by \\\"3\\\" and with $H$ planar. We in fact prove a more general result in terms of so-called framed graphs. This implies that every $(g,d)$-map graph is contained in $ H \\\\boxtimes P\\\\boxtimes K_\\\\ell$, for some planar graph $H$ with treewidth $3$, where $\\\\ell=\\\\max\\\\{2g\\\\lfloor \\\\frac{d}{2} \\\\rfloor,d+3\\\\lfloor\\\\frac{d}{2}\\\\rfloor-3\\\\}$. It also implies that every $(g,1)$-planar graph (that is, graphs that can be drawn in a surface of Euler genus $g$ with at most one crossing per edge) is contained in $H\\\\boxtimes P\\\\boxtimes K_{\\\\max\\\\{4g,7\\\\}}$, for some planar graph $H$ with treewidth $3$.\",\"PeriodicalId\":110830,\"journal\":{\"name\":\"Discret. Math. Theor. Comput. Sci.\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discret. Math. Theor. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/dmtcs.8877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discret. Math. Theor. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/dmtcs.8877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

刘建军,刘建军,刘建军,等。ACM 2020]证明了对于每个具有欧拉属的图$G$$g$,存在一个树宽接近4的图$H$和一条路径$P$,使得$G\subseteq H \boxtimes P \boxtimesK_{\max\{2g,3\}}$。我们通过将“4”替换为“3”并使用$H$ planar来改进此结果。事实上,我们用所谓的框架图证明了一个更一般的结果。这意味着每个$(g,d)$ -map图都包含在$ H \boxtimesP\boxtimes K_\ell$中,对于树宽为$3$的平面图$H$,其中$\ell=\max\{2g\lfloor \frac{d}{2} \rfloor,d+3\lfloor\frac{d}{2}\rfloor-3\}$。它还意味着,对于某些具有树宽$3$的平面图形$H$,每个$(g,1)$ -平面图(即,可以在欧拉属表面$g$上绘制的图,每条边最多有一个交叉点)都包含在$H\boxtimes P\boxtimes K_{\max\{4g,7\}}$中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved product structure for graphs on surfaces
Dujmovi\'c, Joret, Micek, Morin, Ueckerdt and Wood [J. ACM 2020] proved that for every graph $G$ with Euler genus $g$ there is a graph $H$ with treewidth at most 4 and a path $P$ such that $G\subseteq H \boxtimes P \boxtimes K_{\max\{2g,3\}}$. We improve this result by replacing "4" by "3" and with $H$ planar. We in fact prove a more general result in terms of so-called framed graphs. This implies that every $(g,d)$-map graph is contained in $ H \boxtimes P\boxtimes K_\ell$, for some planar graph $H$ with treewidth $3$, where $\ell=\max\{2g\lfloor \frac{d}{2} \rfloor,d+3\lfloor\frac{d}{2}\rfloor-3\}$. It also implies that every $(g,1)$-planar graph (that is, graphs that can be drawn in a surface of Euler genus $g$ with at most one crossing per edge) is contained in $H\boxtimes P\boxtimes K_{\max\{4g,7\}}$, for some planar graph $H$ with treewidth $3$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信