广域网试验台切片QoE与QoS控制的机器学习

F. Matera, E. Tego
{"title":"广域网试验台切片QoE与QoS控制的机器学习","authors":"F. Matera, E. Tego","doi":"10.23919/AEIT53387.2021.9626968","DOIUrl":null,"url":null,"abstract":"In this work an experimental investigation is reported about the use of machine learning, based both on a regressive approach and on artificial neural network, to evaluate the quality of experience from quality of service and other network measurements as packet losses, delays and traffic congestions, to control the performance of slices defined inside a wide area network test bed. Such a method allows the network to recover the best performance according to a knowledge defined network approach.","PeriodicalId":138886,"journal":{"name":"2021 AEIT International Annual Conference (AEIT)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Machine Learning for QoE and QoS Control of Slices in a Wide Area Network Test Bed\",\"authors\":\"F. Matera, E. Tego\",\"doi\":\"10.23919/AEIT53387.2021.9626968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work an experimental investigation is reported about the use of machine learning, based both on a regressive approach and on artificial neural network, to evaluate the quality of experience from quality of service and other network measurements as packet losses, delays and traffic congestions, to control the performance of slices defined inside a wide area network test bed. Such a method allows the network to recover the best performance according to a knowledge defined network approach.\",\"PeriodicalId\":138886,\"journal\":{\"name\":\"2021 AEIT International Annual Conference (AEIT)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 AEIT International Annual Conference (AEIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/AEIT53387.2021.9626968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 AEIT International Annual Conference (AEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/AEIT53387.2021.9626968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在这项工作中,报告了一项关于使用机器学习的实验调查,该研究基于回归方法和人工神经网络,以评估服务质量和其他网络测量(如数据包丢失、延迟和交通拥堵)的体验质量,以控制广域网测试平台内定义的切片的性能。这种方法允许网络根据知识定义的网络方法恢复最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning for QoE and QoS Control of Slices in a Wide Area Network Test Bed
In this work an experimental investigation is reported about the use of machine learning, based both on a regressive approach and on artificial neural network, to evaluate the quality of experience from quality of service and other network measurements as packet losses, delays and traffic congestions, to control the performance of slices defined inside a wide area network test bed. Such a method allows the network to recover the best performance according to a knowledge defined network approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信