定矩阵对特征问题的预条件梯度迭代

Marija Miloloza Pandur
{"title":"定矩阵对特征问题的预条件梯度迭代","authors":"Marija Miloloza Pandur","doi":"10.1553/etna_vol51s331","DOIUrl":null,"url":null,"abstract":"Preconditioned gradient iterations for large and sparse Hermitian generalized eigenvalue problems Ax = λBx, with positive definite B, are efficient methods for computing a few extremal eigenpairs. In this paper we give a unifying framework of preconditioned gradient iterations for definite generalized eigenvalue problems with indefinite B. More precisely, these iterations compute a few eigenvalues closest to the definiteness interval, which can be in the middle of the spectrum, and the corresponding eigenvectors of definite matrix pairs (A,B), that is, pairs having a positive definite linear combination. Sharp convergence theorems for the simplest variants are given. This framework includes an indefinite locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm derived by Kressner, Miloloža Pandur, and Shao [Numer. Algorithms, 66 (2014), pp. 681–703]. We also give a generic algorithm for constructing new “indefinite extensions” of standard (with positive definite B) eigensolvers. Numerical experiments demonstrate the use of our algorithm for solving a product and a hyperbolic quadratic eigenvalue problem. With excellent preconditioners, the indefinite variant of LOBPCG is the most efficient method. Finally, we derive some ideas on how to use our indefinite eigensolver to compute a few eigenvalues around any spectral gap and the corresponding eigenvectors of definite matrix pairs.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Preconditioned gradient iterations for the eigenproblem of definite matrix pairs\",\"authors\":\"Marija Miloloza Pandur\",\"doi\":\"10.1553/etna_vol51s331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Preconditioned gradient iterations for large and sparse Hermitian generalized eigenvalue problems Ax = λBx, with positive definite B, are efficient methods for computing a few extremal eigenpairs. In this paper we give a unifying framework of preconditioned gradient iterations for definite generalized eigenvalue problems with indefinite B. More precisely, these iterations compute a few eigenvalues closest to the definiteness interval, which can be in the middle of the spectrum, and the corresponding eigenvectors of definite matrix pairs (A,B), that is, pairs having a positive definite linear combination. Sharp convergence theorems for the simplest variants are given. This framework includes an indefinite locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm derived by Kressner, Miloloža Pandur, and Shao [Numer. Algorithms, 66 (2014), pp. 681–703]. We also give a generic algorithm for constructing new “indefinite extensions” of standard (with positive definite B) eigensolvers. Numerical experiments demonstrate the use of our algorithm for solving a product and a hyperbolic quadratic eigenvalue problem. With excellent preconditioners, the indefinite variant of LOBPCG is the most efficient method. Finally, we derive some ideas on how to use our indefinite eigensolver to compute a few eigenvalues around any spectral gap and the corresponding eigenvectors of definite matrix pairs.\",\"PeriodicalId\":282695,\"journal\":{\"name\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1553/etna_vol51s331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/etna_vol51s331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

对于具有正定B的大稀疏厄米广义特征值问题Ax = λBx,预条件梯度迭代是计算几个极值特征对的有效方法。本文给出了具有不定B的确定广义特征值问题的一个统一的预条件梯度迭代框架,更准确地说,这些迭代计算出几个最接近于确定区间的特征值,这些特征值可以在谱的中间,以及相应的确定矩阵对(a,B)的特征向量,即具有正定线性组合的对。给出了最简变分的尖锐收敛定理。该框架包括由Kressner, Miloloža Pandur和Shao [number]推导的不定局部最优块预条件共轭梯度(LOBPCG)算法。算法,66 (2014),pp. 681-703]。我们还给出了构造标准(具有正定B)特征解的新“不定扩展”的一般算法。数值实验表明,该算法可用于求解一个乘积和一个双曲二次特征值问题。在良好的预处理条件下,LOBPCG的不定变体是最有效的方法。最后,我们给出了如何利用不定特征求解器计算任意谱隙周围的几个特征值和确定矩阵对对应的特征向量的一些想法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preconditioned gradient iterations for the eigenproblem of definite matrix pairs
Preconditioned gradient iterations for large and sparse Hermitian generalized eigenvalue problems Ax = λBx, with positive definite B, are efficient methods for computing a few extremal eigenpairs. In this paper we give a unifying framework of preconditioned gradient iterations for definite generalized eigenvalue problems with indefinite B. More precisely, these iterations compute a few eigenvalues closest to the definiteness interval, which can be in the middle of the spectrum, and the corresponding eigenvectors of definite matrix pairs (A,B), that is, pairs having a positive definite linear combination. Sharp convergence theorems for the simplest variants are given. This framework includes an indefinite locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm derived by Kressner, Miloloža Pandur, and Shao [Numer. Algorithms, 66 (2014), pp. 681–703]. We also give a generic algorithm for constructing new “indefinite extensions” of standard (with positive definite B) eigensolvers. Numerical experiments demonstrate the use of our algorithm for solving a product and a hyperbolic quadratic eigenvalue problem. With excellent preconditioners, the indefinite variant of LOBPCG is the most efficient method. Finally, we derive some ideas on how to use our indefinite eigensolver to compute a few eigenvalues around any spectral gap and the corresponding eigenvectors of definite matrix pairs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信