{"title":"石英岩全模式反褶积结构分析","authors":"S. Matthies, L. Lutterotti, K. Ullemeyer, H. Wenk","doi":"10.1155/TSM.33.139","DOIUrl":null,"url":null,"abstract":"The recently developed RITA concept combines algorithms of the Rietveld structure analysis with those from modern texture analysis in order to get texture information from d-spacing diffraction spectra. It is demonstrated for a low symmetry material (quartz) and a minimum pole sphere covering by the measured spectra. The quality of the results underlines the efficiency of this new approach especially for time-of-flight neutron diffraction studies where access to the beam is limited. New interesting aspects for crystal structure refinement are discussed.","PeriodicalId":129427,"journal":{"name":"Textures and Microstructures","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"TEXTURE ANALYSIS OF QUARTZITE BY WHOLE PATTERN DECONVOLUTION\",\"authors\":\"S. Matthies, L. Lutterotti, K. Ullemeyer, H. Wenk\",\"doi\":\"10.1155/TSM.33.139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recently developed RITA concept combines algorithms of the Rietveld structure analysis with those from modern texture analysis in order to get texture information from d-spacing diffraction spectra. It is demonstrated for a low symmetry material (quartz) and a minimum pole sphere covering by the measured spectra. The quality of the results underlines the efficiency of this new approach especially for time-of-flight neutron diffraction studies where access to the beam is limited. New interesting aspects for crystal structure refinement are discussed.\",\"PeriodicalId\":129427,\"journal\":{\"name\":\"Textures and Microstructures\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Textures and Microstructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/TSM.33.139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Textures and Microstructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/TSM.33.139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
TEXTURE ANALYSIS OF QUARTZITE BY WHOLE PATTERN DECONVOLUTION
The recently developed RITA concept combines algorithms of the Rietveld structure analysis with those from modern texture analysis in order to get texture information from d-spacing diffraction spectra. It is demonstrated for a low symmetry material (quartz) and a minimum pole sphere covering by the measured spectra. The quality of the results underlines the efficiency of this new approach especially for time-of-flight neutron diffraction studies where access to the beam is limited. New interesting aspects for crystal structure refinement are discussed.