基于机器人和分离摄像机网络的分布式目标跟踪

Junbin Liu, T. Wark, Steven Martin, Peter Corke, Matthew J. A. D'Souza
{"title":"基于机器人和分离摄像机网络的分布式目标跟踪","authors":"Junbin Liu, T. Wark, Steven Martin, Peter Corke, Matthew J. A. D'Souza","doi":"10.1109/PERCOMW.2011.5766911","DOIUrl":null,"url":null,"abstract":"We describe a novel two stage approach to object localization and tracking using a network of wireless cameras and a mobile robot. In the first stage, a robot travels through the camera network while updating its position in a global coordinate frame which it broadcasts to the cameras. The cameras use this information, along with image plane location of the robot, to compute a mapping from their image planes to the global coordinate frame. This is combined with an occupancy map generated by the robot during the mapping process to track the objects. We present results with a nine node indoor camera network to demonstrate that this approach is feasible and offers acceptable level of accuracy in terms of object locations.","PeriodicalId":369430,"journal":{"name":"2011 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Distributed object tracking with robot and disjoint camera networks\",\"authors\":\"Junbin Liu, T. Wark, Steven Martin, Peter Corke, Matthew J. A. D'Souza\",\"doi\":\"10.1109/PERCOMW.2011.5766911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a novel two stage approach to object localization and tracking using a network of wireless cameras and a mobile robot. In the first stage, a robot travels through the camera network while updating its position in a global coordinate frame which it broadcasts to the cameras. The cameras use this information, along with image plane location of the robot, to compute a mapping from their image planes to the global coordinate frame. This is combined with an occupancy map generated by the robot during the mapping process to track the objects. We present results with a nine node indoor camera network to demonstrate that this approach is feasible and offers acceptable level of accuracy in terms of object locations.\",\"PeriodicalId\":369430,\"journal\":{\"name\":\"2011 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PERCOMW.2011.5766911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PERCOMW.2011.5766911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们描述了一种新的两阶段的方法来定位和跟踪使用无线摄像机和移动机器人的网络。在第一阶段,机器人在摄像机网络中移动,同时更新其在全局坐标系中的位置,并将其广播给摄像机。相机使用这些信息,连同机器人的图像平面位置,来计算从它们的图像平面到全局坐标框架的映射。这与机器人在测绘过程中生成的占用地图相结合,以跟踪物体。我们展示了一个九节点室内摄像机网络的结果,以证明这种方法是可行的,并且在物体位置方面提供了可接受的精度水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed object tracking with robot and disjoint camera networks
We describe a novel two stage approach to object localization and tracking using a network of wireless cameras and a mobile robot. In the first stage, a robot travels through the camera network while updating its position in a global coordinate frame which it broadcasts to the cameras. The cameras use this information, along with image plane location of the robot, to compute a mapping from their image planes to the global coordinate frame. This is combined with an occupancy map generated by the robot during the mapping process to track the objects. We present results with a nine node indoor camera network to demonstrate that this approach is feasible and offers acceptable level of accuracy in terms of object locations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信