固体振动运动四频模型米勒算法的优化及软件数值实现

I. Homozkova, Yu A Plaksiy
{"title":"固体振动运动四频模型米勒算法的优化及软件数值实现","authors":"I. Homozkova, Yu A Plaksiy","doi":"10.20998/2078-9130.2021.2.244088","DOIUrl":null,"url":null,"abstract":"On the basis of a programmed-numerical approach, new values of the coefficients in the Miller orientation algorithm are obtained. For this, an analytical reference model of the angular motion of a rigid body was applied in the form of a four-frequency representation of the orientation quaternion.The numerical implementation of the reference model for a given set of frequencies is presented in the form of constructed trajectories in the configuration space of orientation parameters. A software-numerical implementation of Miller's algorithm is carried out for different values of the coefficients and the values of the coefficients are obtained, which optimize the error of the accumulated drift. It is shown that for the presented reference model of angular motion, Miller's algorithm with a new set of coefficients provides a lower computational drift error compared to with the classic Miller algorithm and the Ignagni modification, which are optimized for conical motion.","PeriodicalId":186064,"journal":{"name":"Bulletin of the National Technical University «KhPI» Series: Dynamics and Strength of Machines","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization and software-numerical implementation of miller's algorithm on a four-frequency model of solid vibration movement\",\"authors\":\"I. Homozkova, Yu A Plaksiy\",\"doi\":\"10.20998/2078-9130.2021.2.244088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On the basis of a programmed-numerical approach, new values of the coefficients in the Miller orientation algorithm are obtained. For this, an analytical reference model of the angular motion of a rigid body was applied in the form of a four-frequency representation of the orientation quaternion.The numerical implementation of the reference model for a given set of frequencies is presented in the form of constructed trajectories in the configuration space of orientation parameters. A software-numerical implementation of Miller's algorithm is carried out for different values of the coefficients and the values of the coefficients are obtained, which optimize the error of the accumulated drift. It is shown that for the presented reference model of angular motion, Miller's algorithm with a new set of coefficients provides a lower computational drift error compared to with the classic Miller algorithm and the Ignagni modification, which are optimized for conical motion.\",\"PeriodicalId\":186064,\"journal\":{\"name\":\"Bulletin of the National Technical University «KhPI» Series: Dynamics and Strength of Machines\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the National Technical University «KhPI» Series: Dynamics and Strength of Machines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20998/2078-9130.2021.2.244088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the National Technical University «KhPI» Series: Dynamics and Strength of Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20998/2078-9130.2021.2.244088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在程序数值方法的基础上,得到了米勒定向算法中各系数的新取值。为此,采用了刚体角运动的解析参考模型,以四频表示方向四元数的形式。给出了参考模型在给定频率下的数值实现,并在取向参数组态空间中以构造轨迹的形式给出了实现。对不同的系数值进行了米勒算法的软件数值实现,得到了相应的系数值,优化了累积漂移的误差。结果表明,对于所提出的角运动参考模型,与针对圆锥运动进行优化的经典Miller算法和Ignagni修正算法相比,采用一组新系数的Miller算法具有较小的计算漂移误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization and software-numerical implementation of miller's algorithm on a four-frequency model of solid vibration movement
On the basis of a programmed-numerical approach, new values of the coefficients in the Miller orientation algorithm are obtained. For this, an analytical reference model of the angular motion of a rigid body was applied in the form of a four-frequency representation of the orientation quaternion.The numerical implementation of the reference model for a given set of frequencies is presented in the form of constructed trajectories in the configuration space of orientation parameters. A software-numerical implementation of Miller's algorithm is carried out for different values of the coefficients and the values of the coefficients are obtained, which optimize the error of the accumulated drift. It is shown that for the presented reference model of angular motion, Miller's algorithm with a new set of coefficients provides a lower computational drift error compared to with the classic Miller algorithm and the Ignagni modification, which are optimized for conical motion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信