利用局部模型的归纳查询回答和概念检索

Claudia d’Amato, N. Fanizzi, F. Esposito, Thomas Lukasiewicz
{"title":"利用局部模型的归纳查询回答和概念检索","authors":"Claudia d’Amato, N. Fanizzi, F. Esposito, Thomas Lukasiewicz","doi":"10.1109/ISDA.2009.34","DOIUrl":null,"url":null,"abstract":"We present a classification method, founded in the \\emph{instance-based learning} and the \\emph{disjunctive version space} approach, for performing approximate retrieval from knowledge bases expressed in Description Logics. It is able to supply answers, even though they are not logically entailed by the knowledge base (e.g.\\ because of its incompleteness or when there are inconsistent assertions). Moreover, the method may also induce new knowledge that can be employed to make the ontology population task semi-automatic. The method has been experimentally tested showing that it is sound and effective.","PeriodicalId":330324,"journal":{"name":"2009 Ninth International Conference on Intelligent Systems Design and Applications","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Inductive Query Answering and Concept Retrieval Exploiting Local Models\",\"authors\":\"Claudia d’Amato, N. Fanizzi, F. Esposito, Thomas Lukasiewicz\",\"doi\":\"10.1109/ISDA.2009.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a classification method, founded in the \\\\emph{instance-based learning} and the \\\\emph{disjunctive version space} approach, for performing approximate retrieval from knowledge bases expressed in Description Logics. It is able to supply answers, even though they are not logically entailed by the knowledge base (e.g.\\\\ because of its incompleteness or when there are inconsistent assertions). Moreover, the method may also induce new knowledge that can be employed to make the ontology population task semi-automatic. The method has been experimentally tested showing that it is sound and effective.\",\"PeriodicalId\":330324,\"journal\":{\"name\":\"2009 Ninth International Conference on Intelligent Systems Design and Applications\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Ninth International Conference on Intelligent Systems Design and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2009.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2009.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种\emph{基于实例学习}和\emph{析取版本空间}方法的分类方法,用于从描述逻辑中表达的知识库中执行近似检索。它能够提供答案,即使这些答案在逻辑上不属于知识库(例如,由于知识库不完整或存在不一致的断言)。此外,该方法还可以产生新的知识,用于实现本体填充任务的半自动化。实验结果表明,该方法是合理有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inductive Query Answering and Concept Retrieval Exploiting Local Models
We present a classification method, founded in the \emph{instance-based learning} and the \emph{disjunctive version space} approach, for performing approximate retrieval from knowledge bases expressed in Description Logics. It is able to supply answers, even though they are not logically entailed by the knowledge base (e.g.\ because of its incompleteness or when there are inconsistent assertions). Moreover, the method may also induce new knowledge that can be employed to make the ontology population task semi-automatic. The method has been experimentally tested showing that it is sound and effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信