高斯混合模型用于地面监视多普勒雷达目标分类

I. Bilik, J. Tabrikian, A. Cohen
{"title":"高斯混合模型用于地面监视多普勒雷达目标分类","authors":"I. Bilik, J. Tabrikian, A. Cohen","doi":"10.1109/RADAR.2005.1435957","DOIUrl":null,"url":null,"abstract":"An automatic target recognition (ATR) algorithm, based on greedy learning of Gaussian mixture model (GMM) is developed in this work. The GMMs were obtained for a wide range of ground surveillance radar targets such as: walking person(s), tracked or wheeled vehicles, animals and clutter. Maximum-likelihood (ML) and \"majority voting\" decision schemes were applied to these models for target classification. The corresponding classifiers were trained and tested using distinct databases of target echoes, recorded by ground surveillance radar. ML and \"majority voting\" classifiers obtained classification rates of 88% and 96%, correspondingly. Both classifiers outperform trained human operators.","PeriodicalId":444253,"journal":{"name":"IEEE International Radar Conference, 2005.","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Target classification using Gaussian mixture model for ground surveillance Doppler radar\",\"authors\":\"I. Bilik, J. Tabrikian, A. Cohen\",\"doi\":\"10.1109/RADAR.2005.1435957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An automatic target recognition (ATR) algorithm, based on greedy learning of Gaussian mixture model (GMM) is developed in this work. The GMMs were obtained for a wide range of ground surveillance radar targets such as: walking person(s), tracked or wheeled vehicles, animals and clutter. Maximum-likelihood (ML) and \\\"majority voting\\\" decision schemes were applied to these models for target classification. The corresponding classifiers were trained and tested using distinct databases of target echoes, recorded by ground surveillance radar. ML and \\\"majority voting\\\" classifiers obtained classification rates of 88% and 96%, correspondingly. Both classifiers outperform trained human operators.\",\"PeriodicalId\":444253,\"journal\":{\"name\":\"IEEE International Radar Conference, 2005.\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Radar Conference, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR.2005.1435957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Radar Conference, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2005.1435957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

提出了一种基于贪婪学习的高斯混合模型(GMM)自动目标识别算法。gmm是为广泛的地面监视雷达目标获得的,例如:行走的人,履带式或轮式车辆,动物和杂波。最大似然(ML)和“多数投票”决策方案应用于这些模型进行目标分类。相应的分类器使用不同的目标回波数据库进行训练和测试,这些数据库由地面监视雷达记录。ML和“多数投票”分类器的分类率分别为88%和96%。这两种分类器都优于训练有素的人类操作员。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Target classification using Gaussian mixture model for ground surveillance Doppler radar
An automatic target recognition (ATR) algorithm, based on greedy learning of Gaussian mixture model (GMM) is developed in this work. The GMMs were obtained for a wide range of ground surveillance radar targets such as: walking person(s), tracked or wheeled vehicles, animals and clutter. Maximum-likelihood (ML) and "majority voting" decision schemes were applied to these models for target classification. The corresponding classifiers were trained and tested using distinct databases of target echoes, recorded by ground surveillance radar. ML and "majority voting" classifiers obtained classification rates of 88% and 96%, correspondingly. Both classifiers outperform trained human operators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信