通过变分量子样条实现非线性量子运算

Matteo Antonio Inajetovic, Filippo Orazi, A. Macaluso, Stefano Lodi, Claudio Sartori
{"title":"通过变分量子样条实现非线性量子运算","authors":"Matteo Antonio Inajetovic, Filippo Orazi, A. Macaluso, Stefano Lodi, Claudio Sartori","doi":"10.48550/arXiv.2303.04788","DOIUrl":null,"url":null,"abstract":"The postulates of quantum mechanics impose only unitary transformations on quantum states, which is a severe limitation for quantum machine learning algorithms. Quantum Splines (QSplines) have recently been proposed to approximate quantum activation functions to introduce non-linearity in quantum algorithms. However, QSplines make use of the HHL as a subroutine and require a fault-tolerant quantum computer to be correctly implemented. This work proposes the Generalised QSplines (GQSplines), a novel method for approximating non-linear quantum activation functions using hybrid quantum-classical computation. The GQSplines overcome the highly demanding requirements of the original QSplines in terms of quantum hardware and can be implemented using near-term quantum computers. Furthermore, the proposed method relies on a flexible problem representation for non-linear approximation and it is suitable to be embedded in existing quantum neural network architectures. In addition, we provide a practical implementation of GQSplines using Pennylane and show that our model outperforms the original QSplines in terms of quality of fitting.","PeriodicalId":125954,"journal":{"name":"International Conference on Conceptual Structures","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enabling Non-Linear Quantum Operations through Variational Quantum Splines\",\"authors\":\"Matteo Antonio Inajetovic, Filippo Orazi, A. Macaluso, Stefano Lodi, Claudio Sartori\",\"doi\":\"10.48550/arXiv.2303.04788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The postulates of quantum mechanics impose only unitary transformations on quantum states, which is a severe limitation for quantum machine learning algorithms. Quantum Splines (QSplines) have recently been proposed to approximate quantum activation functions to introduce non-linearity in quantum algorithms. However, QSplines make use of the HHL as a subroutine and require a fault-tolerant quantum computer to be correctly implemented. This work proposes the Generalised QSplines (GQSplines), a novel method for approximating non-linear quantum activation functions using hybrid quantum-classical computation. The GQSplines overcome the highly demanding requirements of the original QSplines in terms of quantum hardware and can be implemented using near-term quantum computers. Furthermore, the proposed method relies on a flexible problem representation for non-linear approximation and it is suitable to be embedded in existing quantum neural network architectures. In addition, we provide a practical implementation of GQSplines using Pennylane and show that our model outperforms the original QSplines in terms of quality of fitting.\",\"PeriodicalId\":125954,\"journal\":{\"name\":\"International Conference on Conceptual Structures\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Conceptual Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2303.04788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Conceptual Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2303.04788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

量子力学的假设只对量子态施加幺正变换,这是量子机器学习算法的一个严重限制。量子样条(qspline)最近被提出来近似量子激活函数,以引入量子算法中的非线性。然而,QSplines使用HHL作为子例程,并且需要容错量子计算机才能正确实现。本文提出了广义QSplines (GQSplines),这是一种使用混合量子经典计算近似非线性量子激活函数的新方法。GQSplines克服了原始QSplines在量子硬件方面的高要求,可以在近期使用量子计算机实现。此外,该方法依赖于灵活的非线性逼近问题表示,适合嵌入到现有的量子神经网络架构中。此外,我们提供了一个使用Pennylane的GQSplines的实际实现,并表明我们的模型在拟合质量方面优于原始的QSplines。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enabling Non-Linear Quantum Operations through Variational Quantum Splines
The postulates of quantum mechanics impose only unitary transformations on quantum states, which is a severe limitation for quantum machine learning algorithms. Quantum Splines (QSplines) have recently been proposed to approximate quantum activation functions to introduce non-linearity in quantum algorithms. However, QSplines make use of the HHL as a subroutine and require a fault-tolerant quantum computer to be correctly implemented. This work proposes the Generalised QSplines (GQSplines), a novel method for approximating non-linear quantum activation functions using hybrid quantum-classical computation. The GQSplines overcome the highly demanding requirements of the original QSplines in terms of quantum hardware and can be implemented using near-term quantum computers. Furthermore, the proposed method relies on a flexible problem representation for non-linear approximation and it is suitable to be embedded in existing quantum neural network architectures. In addition, we provide a practical implementation of GQSplines using Pennylane and show that our model outperforms the original QSplines in terms of quality of fitting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信