最小方差组合、切线组合和相关矩阵代数

Tom Arnold, Terry D. Nixon
{"title":"最小方差组合、切线组合和相关矩阵代数","authors":"Tom Arnold, Terry D. Nixon","doi":"10.2139/ssrn.3607332","DOIUrl":null,"url":null,"abstract":"The matrix algebra associated with finding minimum variance portfolio weights and tangency portfolio weights is greatly simplified by using an Excel presentation. A further simplification of the tangency portfolio weights process is also presented using excess returns for the risky securities. The lesson drawn from this presentation is readily performed online by sharing or recording an Excel screen with students.","PeriodicalId":143061,"journal":{"name":"Practitioner Articles & Resources eJournal","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Minimum Variance Portfolio, the Tangency Portfolio, and the Associated Matrix Algebra\",\"authors\":\"Tom Arnold, Terry D. Nixon\",\"doi\":\"10.2139/ssrn.3607332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The matrix algebra associated with finding minimum variance portfolio weights and tangency portfolio weights is greatly simplified by using an Excel presentation. A further simplification of the tangency portfolio weights process is also presented using excess returns for the risky securities. The lesson drawn from this presentation is readily performed online by sharing or recording an Excel screen with students.\",\"PeriodicalId\":143061,\"journal\":{\"name\":\"Practitioner Articles & Resources eJournal\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Practitioner Articles & Resources eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3607332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Practitioner Articles & Resources eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3607332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过使用Excel表示,与寻找最小方差投资组合权重和切线投资组合权重相关的矩阵代数大大简化了。利用风险证券的超额收益,进一步简化了切线组合权重的计算过程。通过与学生分享或录制Excel屏幕,可以很容易地在网上进行演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Minimum Variance Portfolio, the Tangency Portfolio, and the Associated Matrix Algebra
The matrix algebra associated with finding minimum variance portfolio weights and tangency portfolio weights is greatly simplified by using an Excel presentation. A further simplification of the tangency portfolio weights process is also presented using excess returns for the risky securities. The lesson drawn from this presentation is readily performed online by sharing or recording an Excel screen with students.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信