Yang Shi, Guoqian Liu, Jie Wang, Jiazheng Zhang, Jian Li, Dimitrios Gerontitis
{"title":"应用先进的离散广义神经动力学模型求解具有扰动抑制的离散时变增广Sylvester方程","authors":"Yang Shi, Guoqian Liu, Jie Wang, Jiazheng Zhang, Jian Li, Dimitrios Gerontitis","doi":"10.1109/ICICIP53388.2021.9642177","DOIUrl":null,"url":null,"abstract":"In this paper, an advanced discrete generalized-neurodynamic (A-DGND) model is proposed to solve discrete time-variant augmented Sylvester equation (DTV-ASME) with perturbation suppression. Firstly, we present the discrete time-variant augmented Sylvester matrix equation that can be transformed into a simple matrix-vector problem. Secondly, in the continuous-time environment, for solving the continuous time-variant augmented Sylvester matrix equation (CTV-ASME), an advanced continuous generalized-neurodynamic (A-CGND) model is obtained. Then, based on the four-step discretization formula, an A-DGND model is proposed by discretizing the A-CGND model for solving DTV-ASME with perturbation suppression. Finally, according to the numerical experiment results, the effectiveness and robustness of A-DGND model for solving DTVASME are verified.","PeriodicalId":435799,"journal":{"name":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced Discrete Generalized-Neurodynamic Model Applied to Solve Discrete Time-Variant Augmented Sylvester Equation with Perturbation Suppression\",\"authors\":\"Yang Shi, Guoqian Liu, Jie Wang, Jiazheng Zhang, Jian Li, Dimitrios Gerontitis\",\"doi\":\"10.1109/ICICIP53388.2021.9642177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an advanced discrete generalized-neurodynamic (A-DGND) model is proposed to solve discrete time-variant augmented Sylvester equation (DTV-ASME) with perturbation suppression. Firstly, we present the discrete time-variant augmented Sylvester matrix equation that can be transformed into a simple matrix-vector problem. Secondly, in the continuous-time environment, for solving the continuous time-variant augmented Sylvester matrix equation (CTV-ASME), an advanced continuous generalized-neurodynamic (A-CGND) model is obtained. Then, based on the four-step discretization formula, an A-DGND model is proposed by discretizing the A-CGND model for solving DTV-ASME with perturbation suppression. Finally, according to the numerical experiment results, the effectiveness and robustness of A-DGND model for solving DTVASME are verified.\",\"PeriodicalId\":435799,\"journal\":{\"name\":\"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP53388.2021.9642177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP53388.2021.9642177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Advanced Discrete Generalized-Neurodynamic Model Applied to Solve Discrete Time-Variant Augmented Sylvester Equation with Perturbation Suppression
In this paper, an advanced discrete generalized-neurodynamic (A-DGND) model is proposed to solve discrete time-variant augmented Sylvester equation (DTV-ASME) with perturbation suppression. Firstly, we present the discrete time-variant augmented Sylvester matrix equation that can be transformed into a simple matrix-vector problem. Secondly, in the continuous-time environment, for solving the continuous time-variant augmented Sylvester matrix equation (CTV-ASME), an advanced continuous generalized-neurodynamic (A-CGND) model is obtained. Then, based on the four-step discretization formula, an A-DGND model is proposed by discretizing the A-CGND model for solving DTV-ASME with perturbation suppression. Finally, according to the numerical experiment results, the effectiveness and robustness of A-DGND model for solving DTVASME are verified.