实时宏观信息和债券回报可预测性:深度学习有帮助吗?

Guanhao Feng, Andras Fulop, Junye Li
{"title":"实时宏观信息和债券回报可预测性:深度学习有帮助吗?","authors":"Guanhao Feng, Andras Fulop, Junye Li","doi":"10.2139/ssrn.3517081","DOIUrl":null,"url":null,"abstract":"This paper examines whether deep/machine learning can help find any statistical and/or economic evidence of out-of-sample bond return predictability when real-time, instead of fully-revised, macro variables are taken as predictors. First, we find some statistical evidence for forecasting short-term non-overlapping excess bond returns using deep learning models. Second, for forecasting overlapping excess bond returns, more statistical evidence derives from using deep learning models and other machine learning models. However, all statistical evidence is much weaker than that found from using fully-revised macro data and generates minimal economic gains for a mean-variance investor, regardless of her level of risk aversion and whether she can take short positions.","PeriodicalId":377322,"journal":{"name":"Investments eJournal","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Real-Time Macro Information and Bond Return Predictability: Does Deep Learning Help?\",\"authors\":\"Guanhao Feng, Andras Fulop, Junye Li\",\"doi\":\"10.2139/ssrn.3517081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper examines whether deep/machine learning can help find any statistical and/or economic evidence of out-of-sample bond return predictability when real-time, instead of fully-revised, macro variables are taken as predictors. First, we find some statistical evidence for forecasting short-term non-overlapping excess bond returns using deep learning models. Second, for forecasting overlapping excess bond returns, more statistical evidence derives from using deep learning models and other machine learning models. However, all statistical evidence is much weaker than that found from using fully-revised macro data and generates minimal economic gains for a mean-variance investor, regardless of her level of risk aversion and whether she can take short positions.\",\"PeriodicalId\":377322,\"journal\":{\"name\":\"Investments eJournal\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Investments eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3517081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investments eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3517081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文研究了当采用实时宏观变量作为预测因素时,深度/机器学习是否可以帮助找到样本外债券回报可预测性的统计和/或经济证据,而不是完全修正的宏观变量。首先,我们利用深度学习模型找到了一些预测短期非重叠超额债券收益的统计证据。其次,为了预测重叠的超额债券回报,更多的统计证据来自使用深度学习模型和其他机器学习模型。然而,所有的统计证据都比使用完全修正的宏观数据发现的证据弱得多,并且对于平均方差投资者来说,无论她的风险厌恶程度如何,以及她是否可以做空头寸,都只能产生最小的经济收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-Time Macro Information and Bond Return Predictability: Does Deep Learning Help?
This paper examines whether deep/machine learning can help find any statistical and/or economic evidence of out-of-sample bond return predictability when real-time, instead of fully-revised, macro variables are taken as predictors. First, we find some statistical evidence for forecasting short-term non-overlapping excess bond returns using deep learning models. Second, for forecasting overlapping excess bond returns, more statistical evidence derives from using deep learning models and other machine learning models. However, all statistical evidence is much weaker than that found from using fully-revised macro data and generates minimal economic gains for a mean-variance investor, regardless of her level of risk aversion and whether she can take short positions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信