意大利输电网电力负荷预测的创新算法:Osmose项目PREVEL软件的开发及主要成果

D. Ronzio, E. Collino, G. Lisciandrello, Luca Orrù
{"title":"意大利输电网电力负荷预测的创新算法:Osmose项目PREVEL软件的开发及主要成果","authors":"D. Ronzio, E. Collino, G. Lisciandrello, Luca Orrù","doi":"10.23919/AEIT53387.2021.9626869","DOIUrl":null,"url":null,"abstract":"In the framework of the European OSMOSE project, the Zonal Energy Management System requires, every 15 minutes, the forecast of the loads at each node of the electricity transmission and sub-transmission network for the following three hours. The very short-term forecasts are provided using an Analog Ensemble scheme and an autoregressive method whose inputs consist of the last two months of short-term forecasts and load measurements. The required short-term forecasts result from a Random Forest algorithm trained using the last four months of meteorological data and load measurements. This article describes the first results of the ongoing trial, applied in Southern Italy.","PeriodicalId":138886,"journal":{"name":"2021 AEIT International Annual Conference (AEIT)","volume":"355 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An innovative algorithm for the power loads forecasting in Italian transmission grid: development and main results of the PREVEL software of Osmose project\",\"authors\":\"D. Ronzio, E. Collino, G. Lisciandrello, Luca Orrù\",\"doi\":\"10.23919/AEIT53387.2021.9626869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the framework of the European OSMOSE project, the Zonal Energy Management System requires, every 15 minutes, the forecast of the loads at each node of the electricity transmission and sub-transmission network for the following three hours. The very short-term forecasts are provided using an Analog Ensemble scheme and an autoregressive method whose inputs consist of the last two months of short-term forecasts and load measurements. The required short-term forecasts result from a Random Forest algorithm trained using the last four months of meteorological data and load measurements. This article describes the first results of the ongoing trial, applied in Southern Italy.\",\"PeriodicalId\":138886,\"journal\":{\"name\":\"2021 AEIT International Annual Conference (AEIT)\",\"volume\":\"355 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 AEIT International Annual Conference (AEIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/AEIT53387.2021.9626869\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 AEIT International Annual Conference (AEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/AEIT53387.2021.9626869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在欧洲OSMOSE项目的框架内,区域能源管理系统要求每隔15分钟对输电和分输电网络的每个节点在接下来的三个小时内的负荷进行预测。极短期预测采用模拟集合方案和自回归方法提供,其输入包括最近两个月的短期预测和负荷测量。所需的短期预报来自随机森林算法,该算法使用过去四个月的气象数据和负荷测量数据进行训练。本文描述了在意大利南部应用的正在进行的试验的初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An innovative algorithm for the power loads forecasting in Italian transmission grid: development and main results of the PREVEL software of Osmose project
In the framework of the European OSMOSE project, the Zonal Energy Management System requires, every 15 minutes, the forecast of the loads at each node of the electricity transmission and sub-transmission network for the following three hours. The very short-term forecasts are provided using an Analog Ensemble scheme and an autoregressive method whose inputs consist of the last two months of short-term forecasts and load measurements. The required short-term forecasts result from a Random Forest algorithm trained using the last four months of meteorological data and load measurements. This article describes the first results of the ongoing trial, applied in Southern Italy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信