通过残差检测保护RSA硬件加速器不受差分故障分析的影响

Ana Lasheras, R. Canal, Eva Rodríguez, Luca Cassano
{"title":"通过残差检测保护RSA硬件加速器不受差分故障分析的影响","authors":"Ana Lasheras, R. Canal, Eva Rodríguez, Luca Cassano","doi":"10.1109/DFT.2019.8875320","DOIUrl":null,"url":null,"abstract":"Hardware accelerators for cryptographic algorithms are ubiquitously deployed in nowadays consumer and industrial products. Unfortunately, the HW implementations of such algorithms often suffer from vulnerabilities that expose systems to a number of attacks, among which differential fault analysis (DFA). It is therefore crucial to protect cryptographic circuits against such attacks in a cost-effective and power-efficient way. In this paper, we propose a lightweight technique for protecting circuits implementing the RSA algorithm against DFA. The proposed solution borrows residue checking from the traditional fault tolerance and applies it to RSA circuits in order to first detect the occurrence a fault and then to react to the attack by obfuscating the output values. An experimental campaign demonstrated that the proposed solution detects the 100% of the possible fault attacks while leading to a 2.85% area overhead, a 16.67% power consumption increase and with no operating frequency decrease.","PeriodicalId":415648,"journal":{"name":"2019 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)","volume":"405 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Protecting RSA Hardware Accelerators against Differential Fault Analysis through Residue Checking\",\"authors\":\"Ana Lasheras, R. Canal, Eva Rodríguez, Luca Cassano\",\"doi\":\"10.1109/DFT.2019.8875320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hardware accelerators for cryptographic algorithms are ubiquitously deployed in nowadays consumer and industrial products. Unfortunately, the HW implementations of such algorithms often suffer from vulnerabilities that expose systems to a number of attacks, among which differential fault analysis (DFA). It is therefore crucial to protect cryptographic circuits against such attacks in a cost-effective and power-efficient way. In this paper, we propose a lightweight technique for protecting circuits implementing the RSA algorithm against DFA. The proposed solution borrows residue checking from the traditional fault tolerance and applies it to RSA circuits in order to first detect the occurrence a fault and then to react to the attack by obfuscating the output values. An experimental campaign demonstrated that the proposed solution detects the 100% of the possible fault attacks while leading to a 2.85% area overhead, a 16.67% power consumption increase and with no operating frequency decrease.\",\"PeriodicalId\":415648,\"journal\":{\"name\":\"2019 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)\",\"volume\":\"405 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DFT.2019.8875320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DFT.2019.8875320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

用于加密算法的硬件加速器在当今的消费和工业产品中无处不在。不幸的是,这种算法的硬件实现经常存在漏洞,使系统暴露于许多攻击,其中包括差分故障分析(DFA)。因此,以经济高效的方式保护加密电路免受此类攻击至关重要。在本文中,我们提出了一种轻量级的技术来保护实现RSA算法的电路免受DFA的侵害。该方案从传统的容错机制中借鉴了剩余检测,并将其应用于RSA电路中,首先检测故障的发生,然后通过混淆输出值来对攻击做出反应。实验表明,该方案检测到100%可能的故障攻击,同时导致2.85%的面积开销,16.67%的功耗增加,并且没有降低工作频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Protecting RSA Hardware Accelerators against Differential Fault Analysis through Residue Checking
Hardware accelerators for cryptographic algorithms are ubiquitously deployed in nowadays consumer and industrial products. Unfortunately, the HW implementations of such algorithms often suffer from vulnerabilities that expose systems to a number of attacks, among which differential fault analysis (DFA). It is therefore crucial to protect cryptographic circuits against such attacks in a cost-effective and power-efficient way. In this paper, we propose a lightweight technique for protecting circuits implementing the RSA algorithm against DFA. The proposed solution borrows residue checking from the traditional fault tolerance and applies it to RSA circuits in order to first detect the occurrence a fault and then to react to the attack by obfuscating the output values. An experimental campaign demonstrated that the proposed solution detects the 100% of the possible fault attacks while leading to a 2.85% area overhead, a 16.67% power consumption increase and with no operating frequency decrease.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信