利用神经网络对消费者贷款违约预测进行建模

Amira Kamil Ibrahim Hassan, A. Abraham
{"title":"利用神经网络对消费者贷款违约预测进行建模","authors":"Amira Kamil Ibrahim Hassan, A. Abraham","doi":"10.1109/ICCEEE.2013.6633940","DOIUrl":null,"url":null,"abstract":"In this paper a loan default prediction model was constricted using two attribute detection functions, resulting in two data-sets with reduced attributes and the original data-set. A supervised two-layer feed-forward network, with sigmoid hidden neurons and output neurons is used to produce the prediction model. Back propagation learning algorithm was used for the network. Furthermore three different training algorithms were used to train the neural networks. The neural networks are trained using real world credit application cases from the German bank datasets which has 1000 cases; each case with 24 numerical attributes; upon which the decision is based. The aim of this paper was to compare between the resulting models produced from using different training algorithms, scaled conjugate gradient backpropagation, Levenberg-Marquardt algorithm and One-step secant backpropagation (SCG, LM and OSS). This study show that although there is no great difference between LM and SCG but still LM gives better results. The attribute reduction function used helped to produced models quickly and more accurately.","PeriodicalId":256793,"journal":{"name":"2013 INTERNATIONAL CONFERENCE ON COMPUTING, ELECTRICAL AND ELECTRONIC ENGINEERING (ICCEEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Modeling consumer loan default prediction using neural netware\",\"authors\":\"Amira Kamil Ibrahim Hassan, A. Abraham\",\"doi\":\"10.1109/ICCEEE.2013.6633940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a loan default prediction model was constricted using two attribute detection functions, resulting in two data-sets with reduced attributes and the original data-set. A supervised two-layer feed-forward network, with sigmoid hidden neurons and output neurons is used to produce the prediction model. Back propagation learning algorithm was used for the network. Furthermore three different training algorithms were used to train the neural networks. The neural networks are trained using real world credit application cases from the German bank datasets which has 1000 cases; each case with 24 numerical attributes; upon which the decision is based. The aim of this paper was to compare between the resulting models produced from using different training algorithms, scaled conjugate gradient backpropagation, Levenberg-Marquardt algorithm and One-step secant backpropagation (SCG, LM and OSS). This study show that although there is no great difference between LM and SCG but still LM gives better results. The attribute reduction function used helped to produced models quickly and more accurately.\",\"PeriodicalId\":256793,\"journal\":{\"name\":\"2013 INTERNATIONAL CONFERENCE ON COMPUTING, ELECTRICAL AND ELECTRONIC ENGINEERING (ICCEEE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 INTERNATIONAL CONFERENCE ON COMPUTING, ELECTRICAL AND ELECTRONIC ENGINEERING (ICCEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCEEE.2013.6633940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 INTERNATIONAL CONFERENCE ON COMPUTING, ELECTRICAL AND ELECTRONIC ENGINEERING (ICCEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCEEE.2013.6633940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文利用两个属性检测函数对贷款违约预测模型进行约束,得到两个属性约简的数据集和原始数据集。采用具有s型隐神经元和输出神经元的监督两层前馈网络来建立预测模型。网络采用反向传播学习算法。此外,还使用了三种不同的训练算法来训练神经网络。神经网络使用来自德国银行数据集的真实信贷应用案例进行训练,该数据集有1000个案例;每个case有24个数值属性;作出决定的依据。本文的目的是比较使用不同的训练算法,缩放共轭梯度反向传播,Levenberg-Marquardt算法和一步正割反向传播(SCG, LM和OSS)产生的结果模型。本研究表明,虽然LM与SCG之间没有太大差异,但LM的效果更好。所使用的属性约简函数有助于快速、准确地生成模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling consumer loan default prediction using neural netware
In this paper a loan default prediction model was constricted using two attribute detection functions, resulting in two data-sets with reduced attributes and the original data-set. A supervised two-layer feed-forward network, with sigmoid hidden neurons and output neurons is used to produce the prediction model. Back propagation learning algorithm was used for the network. Furthermore three different training algorithms were used to train the neural networks. The neural networks are trained using real world credit application cases from the German bank datasets which has 1000 cases; each case with 24 numerical attributes; upon which the decision is based. The aim of this paper was to compare between the resulting models produced from using different training algorithms, scaled conjugate gradient backpropagation, Levenberg-Marquardt algorithm and One-step secant backpropagation (SCG, LM and OSS). This study show that although there is no great difference between LM and SCG but still LM gives better results. The attribute reduction function used helped to produced models quickly and more accurately.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信