Yang-yang Dong, Chun-xi Dong, Ying-Tong Zhu, Guoqing Zhao, Song-yang Liu
{"title":"无对匹配的l形嵌套子阵列二维DOA估计","authors":"Yang-yang Dong, Chun-xi Dong, Ying-Tong Zhu, Guoqing Zhao, Song-yang Liu","doi":"10.1049/iet-spr.2015.0252","DOIUrl":null,"url":null,"abstract":"Non-uniform L-shaped array consisting of two nested arrays and its computationally efficient two-dimensional direction-of-arrival (DOA) estimation method are developed in this study. The basic idea of the proposed method is to utilise the property of nested arrays and the conjugate symmetry property of the signal auto-correlation function for different time lags to construct a conjugate augmented spatial–temporal cross-correlation matrix (CAST-CCM) and form joint diagonalisation structure from the signal subspace corresponding to the CAST-CCM. Hence, the DOAs are estimated and paired automatically via signal subspace joint diagonalisation technique. The proposed method can handle underdetermined DOA estimation with automatic matching and deal with the angle ambiguity problem when multiple sources have the same azimuth or elevation angles. Meanwhile, the proposed method is computationally efficient without multidimensional search. The effectiveness of the proposed method is verified through computer simulations.","PeriodicalId":272888,"journal":{"name":"IET Signal Process.","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Two-dimensional DOA estimation for L-shaped array with nested subarrays without pair matching\",\"authors\":\"Yang-yang Dong, Chun-xi Dong, Ying-Tong Zhu, Guoqing Zhao, Song-yang Liu\",\"doi\":\"10.1049/iet-spr.2015.0252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-uniform L-shaped array consisting of two nested arrays and its computationally efficient two-dimensional direction-of-arrival (DOA) estimation method are developed in this study. The basic idea of the proposed method is to utilise the property of nested arrays and the conjugate symmetry property of the signal auto-correlation function for different time lags to construct a conjugate augmented spatial–temporal cross-correlation matrix (CAST-CCM) and form joint diagonalisation structure from the signal subspace corresponding to the CAST-CCM. Hence, the DOAs are estimated and paired automatically via signal subspace joint diagonalisation technique. The proposed method can handle underdetermined DOA estimation with automatic matching and deal with the angle ambiguity problem when multiple sources have the same azimuth or elevation angles. Meanwhile, the proposed method is computationally efficient without multidimensional search. The effectiveness of the proposed method is verified through computer simulations.\",\"PeriodicalId\":272888,\"journal\":{\"name\":\"IET Signal Process.\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Signal Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/iet-spr.2015.0252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/iet-spr.2015.0252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Two-dimensional DOA estimation for L-shaped array with nested subarrays without pair matching
Non-uniform L-shaped array consisting of two nested arrays and its computationally efficient two-dimensional direction-of-arrival (DOA) estimation method are developed in this study. The basic idea of the proposed method is to utilise the property of nested arrays and the conjugate symmetry property of the signal auto-correlation function for different time lags to construct a conjugate augmented spatial–temporal cross-correlation matrix (CAST-CCM) and form joint diagonalisation structure from the signal subspace corresponding to the CAST-CCM. Hence, the DOAs are estimated and paired automatically via signal subspace joint diagonalisation technique. The proposed method can handle underdetermined DOA estimation with automatic matching and deal with the angle ambiguity problem when multiple sources have the same azimuth or elevation angles. Meanwhile, the proposed method is computationally efficient without multidimensional search. The effectiveness of the proposed method is verified through computer simulations.