对偶区间值犹豫模糊粗糙集的构造方法

Kaiyan Yang, L. Shu
{"title":"对偶区间值犹豫模糊粗糙集的构造方法","authors":"Kaiyan Yang, L. Shu","doi":"10.1109/ISKE47853.2019.9170286","DOIUrl":null,"url":null,"abstract":"We combine dual interval valued hesitant fuzzy sets with rough sets to construct a hybrid uncertainty theory. According to the proposed dual interval valued hesitant fuzzy relation, our paper firstly investigated the two rough approximation operators, lower and upper of dual interval valued hesitant fuzzy set. Properties of the two rough approximation operators, their relationships between three specific dual interval valued hesitant fuzzy sets as well as four special fuzzy relations, serial, reflexive, symmetric and transitive relations of the dual interval valued hesitant fuzzy are further studied. Finally, We show the proposed dual interval valued hesitant fuzzy rough set anastz can help making decisions in clinic medical diagnosis.","PeriodicalId":399084,"journal":{"name":"2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructive Method for Dual Interval Valued Hesitant Fuzzy Rough Sets\",\"authors\":\"Kaiyan Yang, L. Shu\",\"doi\":\"10.1109/ISKE47853.2019.9170286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We combine dual interval valued hesitant fuzzy sets with rough sets to construct a hybrid uncertainty theory. According to the proposed dual interval valued hesitant fuzzy relation, our paper firstly investigated the two rough approximation operators, lower and upper of dual interval valued hesitant fuzzy set. Properties of the two rough approximation operators, their relationships between three specific dual interval valued hesitant fuzzy sets as well as four special fuzzy relations, serial, reflexive, symmetric and transitive relations of the dual interval valued hesitant fuzzy are further studied. Finally, We show the proposed dual interval valued hesitant fuzzy rough set anastz can help making decisions in clinic medical diagnosis.\",\"PeriodicalId\":399084,\"journal\":{\"name\":\"2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISKE47853.2019.9170286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISKE47853.2019.9170286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将对偶区间值犹豫模糊集与粗糙集相结合,构造了一个混合不确定性理论。根据所提出的对偶区间值犹豫模糊关系,首先研究了对偶区间值犹豫模糊集的上下两个粗糙逼近算子。进一步研究了这两个粗糙逼近算子的性质、它们在三个特定的对偶区间值犹豫模糊集之间的关系以及对偶区间值犹豫模糊的四种特殊模糊关系、序列关系、自反关系、对称关系和传递关系。最后,我们证明了所提出的对偶区间值犹豫模糊粗糙集anastz可以帮助临床医学诊断决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constructive Method for Dual Interval Valued Hesitant Fuzzy Rough Sets
We combine dual interval valued hesitant fuzzy sets with rough sets to construct a hybrid uncertainty theory. According to the proposed dual interval valued hesitant fuzzy relation, our paper firstly investigated the two rough approximation operators, lower and upper of dual interval valued hesitant fuzzy set. Properties of the two rough approximation operators, their relationships between three specific dual interval valued hesitant fuzzy sets as well as four special fuzzy relations, serial, reflexive, symmetric and transitive relations of the dual interval valued hesitant fuzzy are further studied. Finally, We show the proposed dual interval valued hesitant fuzzy rough set anastz can help making decisions in clinic medical diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信