{"title":"平衡二部有向图中哈密顿环的meyniel型极值有向图","authors":"Ruixia Wang, Linxin Wu, Wei Meng","doi":"10.46298/dmtcs.5851","DOIUrl":null,"url":null,"abstract":"Let $D$ be a strong balanced digraph on $2a$ vertices. Adamus et al. have\nproved that $D$ is hamiltonian if $d(u)+d(v)\\ge 3a$ whenever $uv\\notin A(D)$\nand $vu\\notin A(D)$. The lower bound $3a$ is tight. In this paper, we shall\nshow that the extremal digraph on this condition is two classes of digraphs\nthat can be clearly characterized. Moreover, we also show that if\n$d(u)+d(v)\\geq 3a-1$ whenever $uv\\notin A(D)$ and $vu\\notin A(D)$, then $D$ is\ntraceable. The lower bound $3a-1$ is tight.","PeriodicalId":110830,"journal":{"name":"Discret. Math. Theor. Comput. Sci.","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Extremal digraphs on Meyniel-type condition for hamiltonian cycles in balanced bipartite digraphs\",\"authors\":\"Ruixia Wang, Linxin Wu, Wei Meng\",\"doi\":\"10.46298/dmtcs.5851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $D$ be a strong balanced digraph on $2a$ vertices. Adamus et al. have\\nproved that $D$ is hamiltonian if $d(u)+d(v)\\\\ge 3a$ whenever $uv\\\\notin A(D)$\\nand $vu\\\\notin A(D)$. The lower bound $3a$ is tight. In this paper, we shall\\nshow that the extremal digraph on this condition is two classes of digraphs\\nthat can be clearly characterized. Moreover, we also show that if\\n$d(u)+d(v)\\\\geq 3a-1$ whenever $uv\\\\notin A(D)$ and $vu\\\\notin A(D)$, then $D$ is\\ntraceable. The lower bound $3a-1$ is tight.\",\"PeriodicalId\":110830,\"journal\":{\"name\":\"Discret. Math. Theor. Comput. Sci.\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discret. Math. Theor. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/dmtcs.5851\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discret. Math. Theor. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/dmtcs.5851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extremal digraphs on Meyniel-type condition for hamiltonian cycles in balanced bipartite digraphs
Let $D$ be a strong balanced digraph on $2a$ vertices. Adamus et al. have
proved that $D$ is hamiltonian if $d(u)+d(v)\ge 3a$ whenever $uv\notin A(D)$
and $vu\notin A(D)$. The lower bound $3a$ is tight. In this paper, we shall
show that the extremal digraph on this condition is two classes of digraphs
that can be clearly characterized. Moreover, we also show that if
$d(u)+d(v)\geq 3a-1$ whenever $uv\notin A(D)$ and $vu\notin A(D)$, then $D$ is
traceable. The lower bound $3a-1$ is tight.