关于𝐺2流形中联想3折计数的猜想

D. Joyce
{"title":"关于𝐺2流形中联想3折计数的猜想","authors":"D. Joyce","doi":"10.1090/PSPUM/099/01739","DOIUrl":null,"url":null,"abstract":"There is a strong analogy between compact, torsion-free $G_2$-manifolds $(X,\\varphi,*\\varphi)$ and Calabi-Yau 3-folds $(Y,J,g,\\omega)$. We can also generalize $(X,\\varphi,*\\varphi)$ to 'tamed almost $G_2$-manifolds' $(X,\\varphi,\\psi)$, where we compare $\\varphi$ with $\\omega$ and $\\psi$ with $J$. Associative 3-folds in $X$, a special kind of minimal submanifold, are analogous to $J$-holomorphic curves in $Y$. \nSeveral areas of Symplectic Geometry -- Gromov-Witten theory, Quantum Cohomology, Lagrangian Floer cohomology, Fukaya categories -- are built using 'counts' of moduli spaces of $J$-holomorphic curves in $Y$, but give an answer depending only on the symplectic manifold $(Y,\\omega)$, not on the (almost) complex structure $J$. \nWe investigate whether it may be possible to define interesting invariants of tamed almost $G_2$-manifolds $(X,\\varphi,\\psi)$ by 'counting' compact associative 3-folds $N\\subset X$, such that the invariants depend only on $\\varphi$, and are independent of the 4-form $\\psi$ used to define associative 3-folds. \nWe conjecture that one can define a superpotential $\\Phi_\\psi:{\\mathcal U}\\to\\Lambda_{>0}$ 'counting' associative $\\mathbb Q$-homology 3-spheres $N\\subset X$ which is deformation-invariant in $\\psi$ for $\\varphi$ fixed, up to certain reparametrizations $\\Upsilon:{\\mathcal U}\\to{\\mathcal U}$ of the base ${\\mathcal U}=$Hom$(H_3(X;{\\mathbb Z}),1+\\Lambda_{>0})$, where $\\Lambda_{>0}$ is a Novikov ring. Using this we define a notion of '$G_2$ quantum cohomology'. These ideas may be relevant to String Theory or M-Theory on $G_2$-manifolds. \nWe also discuss Donaldson and Segal's proposal in arXiv:0902.3239, section 6.2, to define invariants 'counting' $G_2$-instantons on tamed almost $G_2$-manifolds $(X,\\varphi,\\psi)$, with 'compensation terms' counting weighted pairs of a $G_2$-instanton and an associative 3-fold, and suggest some modifications to it.","PeriodicalId":384712,"journal":{"name":"Proceedings of Symposia in Pure\n Mathematics","volume":"147 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Conjectures on counting associative 3-folds\\n in 𝐺₂-manifolds\",\"authors\":\"D. Joyce\",\"doi\":\"10.1090/PSPUM/099/01739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a strong analogy between compact, torsion-free $G_2$-manifolds $(X,\\\\varphi,*\\\\varphi)$ and Calabi-Yau 3-folds $(Y,J,g,\\\\omega)$. We can also generalize $(X,\\\\varphi,*\\\\varphi)$ to 'tamed almost $G_2$-manifolds' $(X,\\\\varphi,\\\\psi)$, where we compare $\\\\varphi$ with $\\\\omega$ and $\\\\psi$ with $J$. Associative 3-folds in $X$, a special kind of minimal submanifold, are analogous to $J$-holomorphic curves in $Y$. \\nSeveral areas of Symplectic Geometry -- Gromov-Witten theory, Quantum Cohomology, Lagrangian Floer cohomology, Fukaya categories -- are built using 'counts' of moduli spaces of $J$-holomorphic curves in $Y$, but give an answer depending only on the symplectic manifold $(Y,\\\\omega)$, not on the (almost) complex structure $J$. \\nWe investigate whether it may be possible to define interesting invariants of tamed almost $G_2$-manifolds $(X,\\\\varphi,\\\\psi)$ by 'counting' compact associative 3-folds $N\\\\subset X$, such that the invariants depend only on $\\\\varphi$, and are independent of the 4-form $\\\\psi$ used to define associative 3-folds. \\nWe conjecture that one can define a superpotential $\\\\Phi_\\\\psi:{\\\\mathcal U}\\\\to\\\\Lambda_{>0}$ 'counting' associative $\\\\mathbb Q$-homology 3-spheres $N\\\\subset X$ which is deformation-invariant in $\\\\psi$ for $\\\\varphi$ fixed, up to certain reparametrizations $\\\\Upsilon:{\\\\mathcal U}\\\\to{\\\\mathcal U}$ of the base ${\\\\mathcal U}=$Hom$(H_3(X;{\\\\mathbb Z}),1+\\\\Lambda_{>0})$, where $\\\\Lambda_{>0}$ is a Novikov ring. Using this we define a notion of '$G_2$ quantum cohomology'. These ideas may be relevant to String Theory or M-Theory on $G_2$-manifolds. \\nWe also discuss Donaldson and Segal's proposal in arXiv:0902.3239, section 6.2, to define invariants 'counting' $G_2$-instantons on tamed almost $G_2$-manifolds $(X,\\\\varphi,\\\\psi)$, with 'compensation terms' counting weighted pairs of a $G_2$-instanton and an associative 3-fold, and suggest some modifications to it.\",\"PeriodicalId\":384712,\"journal\":{\"name\":\"Proceedings of Symposia in Pure\\n Mathematics\",\"volume\":\"147 10\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Symposia in Pure\\n Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/PSPUM/099/01739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Symposia in Pure\n Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/PSPUM/099/01739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

紧凑和无扭转之间有很强的相似性 $G_2$-流形 $(X,\varphi,*\varphi)$ 和卡拉比-丘3倍 $(Y,J,g,\omega)$. 我们也可以一般化 $(X,\varphi,*\varphi)$ “几乎被驯服了。 $G_2$-流形" $(X,\varphi,\psi)$,我们比较 $\varphi$ 有 $\omega$ 和 $\psi$ 有 $J$. 联想式3折叠 $X$,是一种特殊的最小子流形,与 $J$-全纯曲线 $Y$. 辛几何的几个领域——Gromov-Witten理论、量子上同调、拉格朗日花上同调、Fukaya范畴——都是用的模空间的计数来建立的 $J$-全纯曲线 $Y$,但给出一个只依赖于辛流形的答案 $(Y,\omega)$,而不是(几乎)复杂的结构 $J$. 我们研究了是否有可能定义有趣的不变量 $G_2$-流形 $(X,\varphi,\psi)$ 通过“计数”紧密结合的3折叠 $N\subset X$,使得不变量只依赖于 $\varphi$,并且与4式无关 $\psi$ 用于定义联想三叠。我们推测可以定义一个超势 $\Phi_\psi:{\mathcal U}\to\Lambda_{>0}$ 计数是联想词 $\mathbb Q$-同源三球 $N\subset X$ 哪个是变形不变的 $\psi$ 为了 $\varphi$ 固定的,直到某些重新参数化 $\Upsilon:{\mathcal U}\to{\mathcal U}$ 基底的 ${\mathcal U}=$家$(H_3(X;{\mathbb Z}),1+\Lambda_{>0})$,其中 $\Lambda_{>0}$ 是诺维科夫戒指。用这个我们定义了一个概念$G_2$ 量子上同调。这些想法可能与弦理论或m理论有关 $G_2$-流形。我们还讨论了Donaldson和Segal在arXiv:0902.3239,第6.2节中关于定义不变量“计数”的建议。 $G_2$-瞬间就被驯服了 $G_2$-流形 $(X,\varphi,\psi)$,“补偿项”计算a的加权对 $G_2$-instanton和联想3-fold,并建议对其进行一些修改。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conjectures on counting associative 3-folds in 𝐺₂-manifolds
There is a strong analogy between compact, torsion-free $G_2$-manifolds $(X,\varphi,*\varphi)$ and Calabi-Yau 3-folds $(Y,J,g,\omega)$. We can also generalize $(X,\varphi,*\varphi)$ to 'tamed almost $G_2$-manifolds' $(X,\varphi,\psi)$, where we compare $\varphi$ with $\omega$ and $\psi$ with $J$. Associative 3-folds in $X$, a special kind of minimal submanifold, are analogous to $J$-holomorphic curves in $Y$. Several areas of Symplectic Geometry -- Gromov-Witten theory, Quantum Cohomology, Lagrangian Floer cohomology, Fukaya categories -- are built using 'counts' of moduli spaces of $J$-holomorphic curves in $Y$, but give an answer depending only on the symplectic manifold $(Y,\omega)$, not on the (almost) complex structure $J$. We investigate whether it may be possible to define interesting invariants of tamed almost $G_2$-manifolds $(X,\varphi,\psi)$ by 'counting' compact associative 3-folds $N\subset X$, such that the invariants depend only on $\varphi$, and are independent of the 4-form $\psi$ used to define associative 3-folds. We conjecture that one can define a superpotential $\Phi_\psi:{\mathcal U}\to\Lambda_{>0}$ 'counting' associative $\mathbb Q$-homology 3-spheres $N\subset X$ which is deformation-invariant in $\psi$ for $\varphi$ fixed, up to certain reparametrizations $\Upsilon:{\mathcal U}\to{\mathcal U}$ of the base ${\mathcal U}=$Hom$(H_3(X;{\mathbb Z}),1+\Lambda_{>0})$, where $\Lambda_{>0}$ is a Novikov ring. Using this we define a notion of '$G_2$ quantum cohomology'. These ideas may be relevant to String Theory or M-Theory on $G_2$-manifolds. We also discuss Donaldson and Segal's proposal in arXiv:0902.3239, section 6.2, to define invariants 'counting' $G_2$-instantons on tamed almost $G_2$-manifolds $(X,\varphi,\psi)$, with 'compensation terms' counting weighted pairs of a $G_2$-instanton and an associative 3-fold, and suggest some modifications to it.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信