在笛卡尔平面的第一象限上有理性的符号培养规则

J. Abouir, B. Benouahmane, Yassine Chakir
{"title":"在笛卡尔平面的第一象限上有理性的符号培养规则","authors":"J. Abouir, B. Benouahmane, Yassine Chakir","doi":"10.1553/etna_vol58s432","DOIUrl":null,"url":null,"abstract":". In this paper we introduce a new symbolic Gaussian formula for the evaluation of an integral over the first quadrant in a Cartesian plane, in particular with respect to the weight function w ( x ) = exp( − x T x − 1 /x T x ) , where x = ( x 1 ,x 2 ) T ∈ R 2+ . It integrates exactly a class of homogeneous Laurent polynomials with coefficients in the commutative field of rational functions in two variables. It is derived using the connection between orthogonal polynomials, two-point Padé approximants, and Gaussian cubatures. We also discuss the connection to two-point Padé-type approximants in order to establish symbolic cubature formulas of interpolatory type. Numerical examples are presented to illustrate the different formulas developed in the paper.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational symbolic cubature rules over the first quadrant in a Cartesian plane\",\"authors\":\"J. Abouir, B. Benouahmane, Yassine Chakir\",\"doi\":\"10.1553/etna_vol58s432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper we introduce a new symbolic Gaussian formula for the evaluation of an integral over the first quadrant in a Cartesian plane, in particular with respect to the weight function w ( x ) = exp( − x T x − 1 /x T x ) , where x = ( x 1 ,x 2 ) T ∈ R 2+ . It integrates exactly a class of homogeneous Laurent polynomials with coefficients in the commutative field of rational functions in two variables. It is derived using the connection between orthogonal polynomials, two-point Padé approximants, and Gaussian cubatures. We also discuss the connection to two-point Padé-type approximants in order to establish symbolic cubature formulas of interpolatory type. Numerical examples are presented to illustrate the different formulas developed in the paper.\",\"PeriodicalId\":282695,\"journal\":{\"name\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1553/etna_vol58s432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/etna_vol58s432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

. 本文引入了一个新的高斯符号公式,用于计算笛卡尔平面上第一象限上的积分,特别是关于权函数w (x) = exp(- x T x - 1 /x T x),其中x = (x 1,x 2) T∈r2 +。在二元有理函数的交换域中精确地积分了一类带系数的齐次洛朗多项式。它是利用正交多项式、两点帕德帕尔近似和高斯曲线之间的联系推导出来的。为了建立插值型的符号培养公式,我们还讨论了与两点pad型近似的联系。给出了数值算例来说明本文所提出的不同公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rational symbolic cubature rules over the first quadrant in a Cartesian plane
. In this paper we introduce a new symbolic Gaussian formula for the evaluation of an integral over the first quadrant in a Cartesian plane, in particular with respect to the weight function w ( x ) = exp( − x T x − 1 /x T x ) , where x = ( x 1 ,x 2 ) T ∈ R 2+ . It integrates exactly a class of homogeneous Laurent polynomials with coefficients in the commutative field of rational functions in two variables. It is derived using the connection between orthogonal polynomials, two-point Padé approximants, and Gaussian cubatures. We also discuss the connection to two-point Padé-type approximants in order to establish symbolic cubature formulas of interpolatory type. Numerical examples are presented to illustrate the different formulas developed in the paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信