周期性ARMA模型:应用于颗粒物质浓度

A. J. Sarnaglia, V. Reisen, P. Bondon
{"title":"周期性ARMA模型:应用于颗粒物质浓度","authors":"A. J. Sarnaglia, V. Reisen, P. Bondon","doi":"10.1109/EUSIPCO.2015.7362771","DOIUrl":null,"url":null,"abstract":"We propose the use of multivariate version of Whittle's methodology to estimate periodic autoregressive moving average models. In the literature, this estimator has been widely used to deal with large data sets, since, in this context, its performance is similar to the Gaussian maximum likelihood estimator and the estimates are obtained much faster. Here, the usefulness of Whittle estimator is illustrated by a Monte Carlo simulation and by fitting the periodic autoregressive moving average model to daily mean concentrations of particulate matter observed in Cariacica, Brazil. The results confirm the potentiality of Whittle estimator when applied to periodic time series.","PeriodicalId":401040,"journal":{"name":"2015 23rd European Signal Processing Conference (EUSIPCO)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Periodic ARMA models: Application to particulate matter concentrations\",\"authors\":\"A. J. Sarnaglia, V. Reisen, P. Bondon\",\"doi\":\"10.1109/EUSIPCO.2015.7362771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose the use of multivariate version of Whittle's methodology to estimate periodic autoregressive moving average models. In the literature, this estimator has been widely used to deal with large data sets, since, in this context, its performance is similar to the Gaussian maximum likelihood estimator and the estimates are obtained much faster. Here, the usefulness of Whittle estimator is illustrated by a Monte Carlo simulation and by fitting the periodic autoregressive moving average model to daily mean concentrations of particulate matter observed in Cariacica, Brazil. The results confirm the potentiality of Whittle estimator when applied to periodic time series.\",\"PeriodicalId\":401040,\"journal\":{\"name\":\"2015 23rd European Signal Processing Conference (EUSIPCO)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 23rd European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUSIPCO.2015.7362771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2015.7362771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们建议使用多元版本的惠特尔的方法来估计周期自回归移动平均模型。在文献中,该估计器被广泛用于处理大型数据集,因为在这种情况下,它的性能类似于高斯极大似然估计器,并且获得估计的速度要快得多。这里,通过蒙特卡罗模拟和将周期性自回归移动平均模型拟合到巴西卡里亚西卡观测到的颗粒物的日平均浓度,说明了Whittle估计器的实用性。结果证实了Whittle估计在周期时间序列上的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Periodic ARMA models: Application to particulate matter concentrations
We propose the use of multivariate version of Whittle's methodology to estimate periodic autoregressive moving average models. In the literature, this estimator has been widely used to deal with large data sets, since, in this context, its performance is similar to the Gaussian maximum likelihood estimator and the estimates are obtained much faster. Here, the usefulness of Whittle estimator is illustrated by a Monte Carlo simulation and by fitting the periodic autoregressive moving average model to daily mean concentrations of particulate matter observed in Cariacica, Brazil. The results confirm the potentiality of Whittle estimator when applied to periodic time series.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信