用于实时目标检测的积分图像流处理

C. Messom, A. Barczak
{"title":"用于实时目标检测的积分图像流处理","authors":"C. Messom, A. Barczak","doi":"10.1109/PDCAT.2008.46","DOIUrl":null,"url":null,"abstract":"This paper presents the design and evaluation of the stream processing implementation of the integral image algorithm. The integral image is a key component of many image processing algorithms in particular the Haar-like feature based systems. Modern GPUs provide a large number of processors with a peak floating point performance that is significantly higher than current general CPUs. This results in significant performance improvement when the Integral Image calculation for large input images is offloaded onto the GPU of the system.","PeriodicalId":282779,"journal":{"name":"2008 Ninth International Conference on Parallel and Distributed Computing, Applications and Technologies","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Stream Processing of Integral Images for Real-Time Object Detection\",\"authors\":\"C. Messom, A. Barczak\",\"doi\":\"10.1109/PDCAT.2008.46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design and evaluation of the stream processing implementation of the integral image algorithm. The integral image is a key component of many image processing algorithms in particular the Haar-like feature based systems. Modern GPUs provide a large number of processors with a peak floating point performance that is significantly higher than current general CPUs. This results in significant performance improvement when the Integral Image calculation for large input images is offloaded onto the GPU of the system.\",\"PeriodicalId\":282779,\"journal\":{\"name\":\"2008 Ninth International Conference on Parallel and Distributed Computing, Applications and Technologies\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Ninth International Conference on Parallel and Distributed Computing, Applications and Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDCAT.2008.46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Ninth International Conference on Parallel and Distributed Computing, Applications and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDCAT.2008.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文给出了积分图像算法流处理实现的设计与评价。积分图像是许多图像处理算法的关键组成部分,特别是基于haar特征的系统。现代gpu提供了大量处理器,峰值浮点性能明显高于当前的通用cpu。当将大输入图像的积分图像计算卸载到系统的GPU上时,这将导致显着的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stream Processing of Integral Images for Real-Time Object Detection
This paper presents the design and evaluation of the stream processing implementation of the integral image algorithm. The integral image is a key component of many image processing algorithms in particular the Haar-like feature based systems. Modern GPUs provide a large number of processors with a peak floating point performance that is significantly higher than current general CPUs. This results in significant performance improvement when the Integral Image calculation for large input images is offloaded onto the GPU of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信