完成Li\ enard-Wiechert势:双曲运动中带电粒子δ函数场的起源

D. J. Cross
{"title":"完成Li\\ enard-Wiechert势:双曲运动中带电粒子δ函数场的起源","authors":"D. J. Cross","doi":"10.1119/1.4904762","DOIUrl":null,"url":null,"abstract":"Calculating the electromagnetic field of a uniformly accelerated charged particle is a surprisingly subtle problem that has been long discussed in the literature. While the correct field has been obtained many times and through various means, it remains somewhat unclear why the (supposedly general) field expression derived from the Li\\'enard-Wiechert potentials misses some terms. We present new derivations of the missing field and potential terms by considering only pure hyperbolic motion, and we amend the offending step in the standard Li\\'enard-Wiechert construction.","PeriodicalId":331413,"journal":{"name":"arXiv: Classical Physics","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Completing the Li\\\\'enard-Wiechert potentials: The origin of the delta function fields for a charged particle in hyperbolic motion\",\"authors\":\"D. J. Cross\",\"doi\":\"10.1119/1.4904762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Calculating the electromagnetic field of a uniformly accelerated charged particle is a surprisingly subtle problem that has been long discussed in the literature. While the correct field has been obtained many times and through various means, it remains somewhat unclear why the (supposedly general) field expression derived from the Li\\\\'enard-Wiechert potentials misses some terms. We present new derivations of the missing field and potential terms by considering only pure hyperbolic motion, and we amend the offending step in the standard Li\\\\'enard-Wiechert construction.\",\"PeriodicalId\":331413,\"journal\":{\"name\":\"arXiv: Classical Physics\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Classical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1119/1.4904762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Classical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1119/1.4904762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

计算均匀加速带电粒子的电磁场是一个令人惊讶的微妙问题,在文献中已经讨论了很长时间。虽然通过各种方法多次获得了正确的场,但仍然不清楚为什么由Li\ enard-Wiechert势导出的(据说是一般的)场表达式遗漏了一些项。我们给出了只考虑纯双曲运动的缺失场和势项的新推导,并修正了标准Li\ enard-Wiechert构造中的违规步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Completing the Li\'enard-Wiechert potentials: The origin of the delta function fields for a charged particle in hyperbolic motion
Calculating the electromagnetic field of a uniformly accelerated charged particle is a surprisingly subtle problem that has been long discussed in the literature. While the correct field has been obtained many times and through various means, it remains somewhat unclear why the (supposedly general) field expression derived from the Li\'enard-Wiechert potentials misses some terms. We present new derivations of the missing field and potential terms by considering only pure hyperbolic motion, and we amend the offending step in the standard Li\'enard-Wiechert construction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信