计算机合成的复合图像无损压缩研究

X. Li, S. Lei
{"title":"计算机合成的复合图像无损压缩研究","authors":"X. Li, S. Lei","doi":"10.1109/ICIP.2001.958147","DOIUrl":null,"url":null,"abstract":"This paper studies the problem of lossless compression of computer generated compound images that contain not only photographic images but also text and graphic images. We present a simple backward adaptive classification scheme to separate the image source into three classes: smooth regions, text regions and image regions. Different probability models are assigned within each class to maximize the compression performance. We also extend our scheme to exploit the interplane dependency for coding color images. The segmentation results of the reference color plane are used as the contexts for the classification and coding of the current color plane. Our new lossless coder significantly outperforms current state-of-the-art coders such as CALIC and JPEG-LS for compound images with modest computational complexity.","PeriodicalId":291827,"journal":{"name":"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"On the study of lossless compression of computer generated compound images\",\"authors\":\"X. Li, S. Lei\",\"doi\":\"10.1109/ICIP.2001.958147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the problem of lossless compression of computer generated compound images that contain not only photographic images but also text and graphic images. We present a simple backward adaptive classification scheme to separate the image source into three classes: smooth regions, text regions and image regions. Different probability models are assigned within each class to maximize the compression performance. We also extend our scheme to exploit the interplane dependency for coding color images. The segmentation results of the reference color plane are used as the contexts for the classification and coding of the current color plane. Our new lossless coder significantly outperforms current state-of-the-art coders such as CALIC and JPEG-LS for compound images with modest computational complexity.\",\"PeriodicalId\":291827,\"journal\":{\"name\":\"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2001.958147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2001.958147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文研究了计算机生成的复合图像的无损压缩问题,这些复合图像不仅包括摄影图像,还包括文字图像和图形图像。提出了一种简单的后向自适应分类方案,将图像源分为三类:平滑区域、文本区域和图像区域。在每个类中分配不同的概率模型以最大化压缩性能。我们还扩展了我们的方案,利用平面间依赖来编码彩色图像。参考颜色平面的分割结果作为当前颜色平面分类和编码的上下文。我们的新型无损编码器在计算复杂度适中的复合图像方面明显优于当前最先进的编码器,如CALIC和JPEG-LS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the study of lossless compression of computer generated compound images
This paper studies the problem of lossless compression of computer generated compound images that contain not only photographic images but also text and graphic images. We present a simple backward adaptive classification scheme to separate the image source into three classes: smooth regions, text regions and image regions. Different probability models are assigned within each class to maximize the compression performance. We also extend our scheme to exploit the interplane dependency for coding color images. The segmentation results of the reference color plane are used as the contexts for the classification and coding of the current color plane. Our new lossless coder significantly outperforms current state-of-the-art coders such as CALIC and JPEG-LS for compound images with modest computational complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信