丢番图方程3^x+p^y=z^2,其中p≡2 (mod 3)

Wipawee Tangjai, Chusak Chubthaisong
{"title":"丢番图方程3^x+p^y=z^2,其中p≡2 (mod 3)","authors":"Wipawee Tangjai, Chusak Chubthaisong","doi":"10.37394/23206.2021.20.29","DOIUrl":null,"url":null,"abstract":"Let p be a prime number where p ≡ 2 (mod 3). In this work, we give a nonnegative integer solution for the Diophantine equation 3x+py = z2. If y = 0, then (p, x, y, z) = (p, 1, 0, 2) is the only solution of the equation for each prime number p. If y is not divisible by 4, then the equation has a unique solution (p, x, y, z) = (2, 0, 3, 3). In case that y is a positive integer that is not divisible by 4, we give a necessary condition for an existence of a solution and give a computational result for p < 1017. We also give a necessary condition for an existence of a solution for qx + py = z2 when p and q are distinct prime numbers.","PeriodicalId":112268,"journal":{"name":"WSEAS Transactions on Mathematics archive","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the Diophantine equation 3^x+p^y=z^2 where p ≡ 2 (mod 3)\",\"authors\":\"Wipawee Tangjai, Chusak Chubthaisong\",\"doi\":\"10.37394/23206.2021.20.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let p be a prime number where p ≡ 2 (mod 3). In this work, we give a nonnegative integer solution for the Diophantine equation 3x+py = z2. If y = 0, then (p, x, y, z) = (p, 1, 0, 2) is the only solution of the equation for each prime number p. If y is not divisible by 4, then the equation has a unique solution (p, x, y, z) = (2, 0, 3, 3). In case that y is a positive integer that is not divisible by 4, we give a necessary condition for an existence of a solution and give a computational result for p < 1017. We also give a necessary condition for an existence of a solution for qx + py = z2 when p and q are distinct prime numbers.\",\"PeriodicalId\":112268,\"journal\":{\"name\":\"WSEAS Transactions on Mathematics archive\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS Transactions on Mathematics archive\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/23206.2021.20.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Mathematics archive","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/23206.2021.20.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

设p为素数,其中p≡2 (mod 3)。在这项工作中,我们给出了丢芬图方程3x+py = z2的非负整数解。如果y = 0,那么(p, x, y, z) = (p, 1 0 2)是唯一的解决方案为每个素数p方程。如果y是不能被4整除,那么这个方程有唯一解(p, x, y, z) =(2 0 3, 3)。如果y是一个正整数,不能被4整除,我们给一个解决方案的存在的必要条件和计算结果p < 1017。给出了当p和q为不同质数时,qx + py = z2解存在的必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Diophantine equation 3^x+p^y=z^2 where p ≡ 2 (mod 3)
Let p be a prime number where p ≡ 2 (mod 3). In this work, we give a nonnegative integer solution for the Diophantine equation 3x+py = z2. If y = 0, then (p, x, y, z) = (p, 1, 0, 2) is the only solution of the equation for each prime number p. If y is not divisible by 4, then the equation has a unique solution (p, x, y, z) = (2, 0, 3, 3). In case that y is a positive integer that is not divisible by 4, we give a necessary condition for an existence of a solution and give a computational result for p < 1017. We also give a necessary condition for an existence of a solution for qx + py = z2 when p and q are distinct prime numbers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信