MI2D:用二维贴图操作加速矩阵反转

Lingfeng Chen, Tian Xia, Wenzhe Zhao, Pengju Ren
{"title":"MI2D:用二维贴图操作加速矩阵反转","authors":"Lingfeng Chen, Tian Xia, Wenzhe Zhao, Pengju Ren","doi":"10.1145/3526241.3530314","DOIUrl":null,"url":null,"abstract":"Matrix inversion is critical in mathematics and scientific applications. Large-scale dense matrix inversion is especially challenging for modern computers due to its heavy dependency of matrix elements and the poor temporal data locality. In this paper, we propose a novel accelerator termed MI2D, which converts matrix inversion into regular matrix multiplications using 2-dimensional cross-tile operations and novel algorithms for efficient data reuse and computations. Our evaluations show that MI2D can be easily integrated with existing matrix engines in modern high-end CPU and NPU, and effectively improves matrix inversion with 2.7× speedup against Intel Skylake CPU, and 24× against NVIDIA RTX 2080 Ti.","PeriodicalId":188228,"journal":{"name":"Proceedings of the Great Lakes Symposium on VLSI 2022","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MI2D: Accelerating Matrix Inversion with 2-Dimensional Tile Manipulations\",\"authors\":\"Lingfeng Chen, Tian Xia, Wenzhe Zhao, Pengju Ren\",\"doi\":\"10.1145/3526241.3530314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Matrix inversion is critical in mathematics and scientific applications. Large-scale dense matrix inversion is especially challenging for modern computers due to its heavy dependency of matrix elements and the poor temporal data locality. In this paper, we propose a novel accelerator termed MI2D, which converts matrix inversion into regular matrix multiplications using 2-dimensional cross-tile operations and novel algorithms for efficient data reuse and computations. Our evaluations show that MI2D can be easily integrated with existing matrix engines in modern high-end CPU and NPU, and effectively improves matrix inversion with 2.7× speedup against Intel Skylake CPU, and 24× against NVIDIA RTX 2080 Ti.\",\"PeriodicalId\":188228,\"journal\":{\"name\":\"Proceedings of the Great Lakes Symposium on VLSI 2022\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Great Lakes Symposium on VLSI 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3526241.3530314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Great Lakes Symposium on VLSI 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3526241.3530314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

矩阵反演在数学和科学应用中是至关重要的。大规模密集矩阵反演由于其对矩阵元素的依赖性和数据局部性差,对现代计算机来说尤其具有挑战性。在本文中,我们提出了一种称为MI2D的新型加速器,它使用二维交叉块操作和有效的数据重用和计算的新算法将矩阵反演转换为规则矩阵乘法。我们的评估表明,MI2D可以很容易地与现代高端CPU和NPU中现有的矩阵引擎集成,并有效地提高了矩阵反演,在英特尔Skylake CPU上加速2.7倍,在NVIDIA RTX 2080 Ti上加速24倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MI2D: Accelerating Matrix Inversion with 2-Dimensional Tile Manipulations
Matrix inversion is critical in mathematics and scientific applications. Large-scale dense matrix inversion is especially challenging for modern computers due to its heavy dependency of matrix elements and the poor temporal data locality. In this paper, we propose a novel accelerator termed MI2D, which converts matrix inversion into regular matrix multiplications using 2-dimensional cross-tile operations and novel algorithms for efficient data reuse and computations. Our evaluations show that MI2D can be easily integrated with existing matrix engines in modern high-end CPU and NPU, and effectively improves matrix inversion with 2.7× speedup against Intel Skylake CPU, and 24× against NVIDIA RTX 2080 Ti.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信