重有机质沉积地层损害控制、分析与修复技术

Abdulaziz Alqasim, Mutaz Alsubhi, Amer Al-Anazi
{"title":"重有机质沉积地层损害控制、分析与修复技术","authors":"Abdulaziz Alqasim, Mutaz Alsubhi, Amer Al-Anazi","doi":"10.2118/198170-ms","DOIUrl":null,"url":null,"abstract":"\n Formation damage resulting from organic and inorganic depositions, such as calcium carbonate, asphaltene and paraffin, is one of the most commonly encountered types of damage in the oil and gas industry. These depositions are usually associated with a decrease in crude productivity, accelerated failure of production completions, such as from electric submersible pumps (ESPs), and less footage coverage while running with production and flow profile logging tools. The major concern highlighted is the increased probability of having more organic deposits in the wellbore as a result of the increased scale of the inorganic deposits.\n A thick, heterogeneous sludge mix of hydrocarbons and solid materials is a critical subject for characterization and solubility measurements. Analyzed deposit samples were collected either while running with production logging tools, when pulling out a failed ESP, or when lowering the completion equipment. The hydrocarbon phase was removed by organic solvent and the precipitated solid materials were collected for a lab analysis and solubility test. The solid phase analyses included X-ray diffraction (XRD) analysis and scanning/transmission electron microscopy (SEM and TEM). The composition of organic deposit samples was investigated using saturates, aromatics, resins, and asphaltenes (SARA) characterization, Fourier transform infrared analysis (FTIR) and Fourier transform ion cyclotron resonance mass spectrometry (FTMS). The sludge sample solubility tests were conducted over a variety of organic solvents at different temperatures, up to 300°F with a solid mass/liquid volume ratio of 1:10.\n The paper presents a typical analysis procedure of organic deposits collected from downhole equipment. The XRD analysis of solid debris materials (inorganic) present in collected sticky materials samples showed that the materials contained mainly carbonate compounds; for instance, calcite-CaCO3, dolomite-CaMg(CO3)2, and Halite-NaCl. These materials were completely soluble in acids like 15 wt% of HCl at reservoir conditions. Calcite scale would have been a problem in cases where the calcium content exceeded 12,000 mg/L. Low solubility results were obtained with static reaction of organic solvents recipes with the sticky materials around 17 to 50 wt%. This, in turn, increased solubility up to 98% as observed from the reaction in dynamic conditions.","PeriodicalId":282370,"journal":{"name":"Day 2 Mon, October 14, 2019","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Heavy Organic Deposit Formation Damage Control, Analysis and Remediation Techniques\",\"authors\":\"Abdulaziz Alqasim, Mutaz Alsubhi, Amer Al-Anazi\",\"doi\":\"10.2118/198170-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Formation damage resulting from organic and inorganic depositions, such as calcium carbonate, asphaltene and paraffin, is one of the most commonly encountered types of damage in the oil and gas industry. These depositions are usually associated with a decrease in crude productivity, accelerated failure of production completions, such as from electric submersible pumps (ESPs), and less footage coverage while running with production and flow profile logging tools. The major concern highlighted is the increased probability of having more organic deposits in the wellbore as a result of the increased scale of the inorganic deposits.\\n A thick, heterogeneous sludge mix of hydrocarbons and solid materials is a critical subject for characterization and solubility measurements. Analyzed deposit samples were collected either while running with production logging tools, when pulling out a failed ESP, or when lowering the completion equipment. The hydrocarbon phase was removed by organic solvent and the precipitated solid materials were collected for a lab analysis and solubility test. The solid phase analyses included X-ray diffraction (XRD) analysis and scanning/transmission electron microscopy (SEM and TEM). The composition of organic deposit samples was investigated using saturates, aromatics, resins, and asphaltenes (SARA) characterization, Fourier transform infrared analysis (FTIR) and Fourier transform ion cyclotron resonance mass spectrometry (FTMS). The sludge sample solubility tests were conducted over a variety of organic solvents at different temperatures, up to 300°F with a solid mass/liquid volume ratio of 1:10.\\n The paper presents a typical analysis procedure of organic deposits collected from downhole equipment. The XRD analysis of solid debris materials (inorganic) present in collected sticky materials samples showed that the materials contained mainly carbonate compounds; for instance, calcite-CaCO3, dolomite-CaMg(CO3)2, and Halite-NaCl. These materials were completely soluble in acids like 15 wt% of HCl at reservoir conditions. Calcite scale would have been a problem in cases where the calcium content exceeded 12,000 mg/L. Low solubility results were obtained with static reaction of organic solvents recipes with the sticky materials around 17 to 50 wt%. This, in turn, increased solubility up to 98% as observed from the reaction in dynamic conditions.\",\"PeriodicalId\":282370,\"journal\":{\"name\":\"Day 2 Mon, October 14, 2019\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Mon, October 14, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/198170-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Mon, October 14, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/198170-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由碳酸钙、沥青质和石蜡等有机和无机沉积引起的地层损害是油气行业中最常见的损害类型之一。这些沉积通常伴随着原油产能的下降,生产完井的加速失效,例如电潜泵(esp),以及使用生产和流量剖面测井工具时进尺覆盖范围的减少。重点关注的是,由于无机沉积物的规模增加,井眼中有机沉积物的可能性增加。碳氢化合物和固体物质的粘稠,非均质污泥混合物是表征和溶解度测量的关键主题。在使用生产测井工具、拔出故障的电潜泵或下放完井设备时,收集了分析的储层样本。用有机溶剂除去烃类相,并收集沉淀固体物质进行实验室分析和溶解度测试。固相分析包括x射线衍射(XRD)分析和扫描/透射电子显微镜(SEM和TEM)分析。利用饱和烃、芳烃、树脂和沥青质(SARA)表征、傅里叶变换红外分析(FTIR)和傅里叶变换离子回旋共振质谱(FTMS)对有机沉积物样品的组成进行了研究。污泥样品的溶解度测试在不同温度下进行,最高温度为300°F,固液体积比为1:10。本文介绍了从井下设备采集的有机矿床的典型分析方法。对收集到的粘性材料样品中存在的固体碎屑物质(无机)进行XRD分析表明,这些物质主要含有碳酸盐类化合物;例如,方解石- caco3,白云石- camg (CO3)2和盐- nacl。在储层条件下,这些材料完全可溶于15% HCl等酸。在钙含量超过12000毫克/升的情况下,方解石结垢就会产生问题。有机溶剂配方与粘性物质静态反应的溶解度较低,约为17 ~ 50%。这反过来又使溶解度提高到98%,从动态条件下的反应中可以观察到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heavy Organic Deposit Formation Damage Control, Analysis and Remediation Techniques
Formation damage resulting from organic and inorganic depositions, such as calcium carbonate, asphaltene and paraffin, is one of the most commonly encountered types of damage in the oil and gas industry. These depositions are usually associated with a decrease in crude productivity, accelerated failure of production completions, such as from electric submersible pumps (ESPs), and less footage coverage while running with production and flow profile logging tools. The major concern highlighted is the increased probability of having more organic deposits in the wellbore as a result of the increased scale of the inorganic deposits. A thick, heterogeneous sludge mix of hydrocarbons and solid materials is a critical subject for characterization and solubility measurements. Analyzed deposit samples were collected either while running with production logging tools, when pulling out a failed ESP, or when lowering the completion equipment. The hydrocarbon phase was removed by organic solvent and the precipitated solid materials were collected for a lab analysis and solubility test. The solid phase analyses included X-ray diffraction (XRD) analysis and scanning/transmission electron microscopy (SEM and TEM). The composition of organic deposit samples was investigated using saturates, aromatics, resins, and asphaltenes (SARA) characterization, Fourier transform infrared analysis (FTIR) and Fourier transform ion cyclotron resonance mass spectrometry (FTMS). The sludge sample solubility tests were conducted over a variety of organic solvents at different temperatures, up to 300°F with a solid mass/liquid volume ratio of 1:10. The paper presents a typical analysis procedure of organic deposits collected from downhole equipment. The XRD analysis of solid debris materials (inorganic) present in collected sticky materials samples showed that the materials contained mainly carbonate compounds; for instance, calcite-CaCO3, dolomite-CaMg(CO3)2, and Halite-NaCl. These materials were completely soluble in acids like 15 wt% of HCl at reservoir conditions. Calcite scale would have been a problem in cases where the calcium content exceeded 12,000 mg/L. Low solubility results were obtained with static reaction of organic solvents recipes with the sticky materials around 17 to 50 wt%. This, in turn, increased solubility up to 98% as observed from the reaction in dynamic conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信