智能家居环境的异常检测研究

Mehmet Erhan Bilgin, H. Kilinç, A. Zaim
{"title":"智能家居环境的异常检测研究","authors":"Mehmet Erhan Bilgin, H. Kilinç, A. Zaim","doi":"10.1109/UBMK55850.2022.9919448","DOIUrl":null,"url":null,"abstract":"Unusual sensor data in smart homes may herald different problems based on sensor errors, security vulnera-bilities, activity and behavior changes. This study focuses on detecting anomalies and unusual situations in 7 different sensor data in a house. For this, a model created with a combination of unsupervised and supervised machine learning algorithms is used. The sensor data are labeled using Isolation Forest which is one of the unsupervised algorithms. Then, the data is trained with the supervised algorithms Decision Tree, Extra Trees, Random Forest and XGBoost classification algorithms. Anomaly decisions are made with an accuracy of over 99 percent.","PeriodicalId":417604,"journal":{"name":"2022 7th International Conference on Computer Science and Engineering (UBMK)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Anomaly Detection Study for the Smart Home Environment\",\"authors\":\"Mehmet Erhan Bilgin, H. Kilinç, A. Zaim\",\"doi\":\"10.1109/UBMK55850.2022.9919448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unusual sensor data in smart homes may herald different problems based on sensor errors, security vulnera-bilities, activity and behavior changes. This study focuses on detecting anomalies and unusual situations in 7 different sensor data in a house. For this, a model created with a combination of unsupervised and supervised machine learning algorithms is used. The sensor data are labeled using Isolation Forest which is one of the unsupervised algorithms. Then, the data is trained with the supervised algorithms Decision Tree, Extra Trees, Random Forest and XGBoost classification algorithms. Anomaly decisions are made with an accuracy of over 99 percent.\",\"PeriodicalId\":417604,\"journal\":{\"name\":\"2022 7th International Conference on Computer Science and Engineering (UBMK)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 7th International Conference on Computer Science and Engineering (UBMK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UBMK55850.2022.9919448\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Computer Science and Engineering (UBMK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UBMK55850.2022.9919448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

智能家居中不寻常的传感器数据可能预示着基于传感器错误、安全漏洞、活动和行为变化的不同问题。本研究的重点是检测房屋中7种不同传感器数据中的异常和不寻常情况。为此,使用无监督和有监督机器学习算法相结合创建的模型。采用隔离森林算法对传感器数据进行标记,隔离森林算法是一种无监督算法。然后,使用监督算法Decision Tree、Extra Trees、Random Forest和XGBoost分类算法对数据进行训练。异常决策的准确率超过99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Anomaly Detection Study for the Smart Home Environment
Unusual sensor data in smart homes may herald different problems based on sensor errors, security vulnera-bilities, activity and behavior changes. This study focuses on detecting anomalies and unusual situations in 7 different sensor data in a house. For this, a model created with a combination of unsupervised and supervised machine learning algorithms is used. The sensor data are labeled using Isolation Forest which is one of the unsupervised algorithms. Then, the data is trained with the supervised algorithms Decision Tree, Extra Trees, Random Forest and XGBoost classification algorithms. Anomaly decisions are made with an accuracy of over 99 percent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信