{"title":"智能家居环境的异常检测研究","authors":"Mehmet Erhan Bilgin, H. Kilinç, A. Zaim","doi":"10.1109/UBMK55850.2022.9919448","DOIUrl":null,"url":null,"abstract":"Unusual sensor data in smart homes may herald different problems based on sensor errors, security vulnera-bilities, activity and behavior changes. This study focuses on detecting anomalies and unusual situations in 7 different sensor data in a house. For this, a model created with a combination of unsupervised and supervised machine learning algorithms is used. The sensor data are labeled using Isolation Forest which is one of the unsupervised algorithms. Then, the data is trained with the supervised algorithms Decision Tree, Extra Trees, Random Forest and XGBoost classification algorithms. Anomaly decisions are made with an accuracy of over 99 percent.","PeriodicalId":417604,"journal":{"name":"2022 7th International Conference on Computer Science and Engineering (UBMK)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Anomaly Detection Study for the Smart Home Environment\",\"authors\":\"Mehmet Erhan Bilgin, H. Kilinç, A. Zaim\",\"doi\":\"10.1109/UBMK55850.2022.9919448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unusual sensor data in smart homes may herald different problems based on sensor errors, security vulnera-bilities, activity and behavior changes. This study focuses on detecting anomalies and unusual situations in 7 different sensor data in a house. For this, a model created with a combination of unsupervised and supervised machine learning algorithms is used. The sensor data are labeled using Isolation Forest which is one of the unsupervised algorithms. Then, the data is trained with the supervised algorithms Decision Tree, Extra Trees, Random Forest and XGBoost classification algorithms. Anomaly decisions are made with an accuracy of over 99 percent.\",\"PeriodicalId\":417604,\"journal\":{\"name\":\"2022 7th International Conference on Computer Science and Engineering (UBMK)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 7th International Conference on Computer Science and Engineering (UBMK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UBMK55850.2022.9919448\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Computer Science and Engineering (UBMK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UBMK55850.2022.9919448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Anomaly Detection Study for the Smart Home Environment
Unusual sensor data in smart homes may herald different problems based on sensor errors, security vulnera-bilities, activity and behavior changes. This study focuses on detecting anomalies and unusual situations in 7 different sensor data in a house. For this, a model created with a combination of unsupervised and supervised machine learning algorithms is used. The sensor data are labeled using Isolation Forest which is one of the unsupervised algorithms. Then, the data is trained with the supervised algorithms Decision Tree, Extra Trees, Random Forest and XGBoost classification algorithms. Anomaly decisions are made with an accuracy of over 99 percent.