异构网络流量分流场景

Adrian Kliks, N. Dimitriou, A. Zalonis, O. Holland
{"title":"异构网络流量分流场景","authors":"Adrian Kliks, N. Dimitriou, A. Zalonis, O. Holland","doi":"10.1017/CBO9781107297333.007","DOIUrl":null,"url":null,"abstract":"This chapter considers the challenges faced by network operators and service providers accommodating the increasing traffic demands in cellular networks in the most efficient yet inexpensive way. It proposes that these challenges are addressed by offloading part of the traffic to femto cell access points (FAPs) and WiFi access points (WiFiAPs). Whereas 4G micro and pico cell base stations are assumed to be managed by the network operator in terms of setup and maintenance, FAPs and WiFiAPs are normally bought and operated by the end-user. The main difference between these two solutions is that the FAPs operate on the frequency bands assigned to the network operator by national regulators, while WiFiAPs work on unlicensed spectrum. This chapter analyzes the pros and cons of such approaches, and the tradeoffs related to the different mechanisms employed in cellular and WiFi networks for interference management. Moreover, various methods for traffic offloading by the mobile network operator are discussed in detail, including local IP access (LIPA), selective IP traffic offloading (SIPTO), IP flow mobility (IFOM), access network discovery and selection function (ANDSF), and Hotspot 2.0, etc. In the experimental part of this chapter, means for traffic management from the network operator’s perspective are discussed, taking into account costs and energy savings. Furthermore, a novel resource usage coordination concept in conjunction with the WiFi offloading concept is presented.","PeriodicalId":315180,"journal":{"name":"Design and Deployment of Small Cell Networks","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Traffic offloading scenarios for heterogeneous networks\",\"authors\":\"Adrian Kliks, N. Dimitriou, A. Zalonis, O. Holland\",\"doi\":\"10.1017/CBO9781107297333.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter considers the challenges faced by network operators and service providers accommodating the increasing traffic demands in cellular networks in the most efficient yet inexpensive way. It proposes that these challenges are addressed by offloading part of the traffic to femto cell access points (FAPs) and WiFi access points (WiFiAPs). Whereas 4G micro and pico cell base stations are assumed to be managed by the network operator in terms of setup and maintenance, FAPs and WiFiAPs are normally bought and operated by the end-user. The main difference between these two solutions is that the FAPs operate on the frequency bands assigned to the network operator by national regulators, while WiFiAPs work on unlicensed spectrum. This chapter analyzes the pros and cons of such approaches, and the tradeoffs related to the different mechanisms employed in cellular and WiFi networks for interference management. Moreover, various methods for traffic offloading by the mobile network operator are discussed in detail, including local IP access (LIPA), selective IP traffic offloading (SIPTO), IP flow mobility (IFOM), access network discovery and selection function (ANDSF), and Hotspot 2.0, etc. In the experimental part of this chapter, means for traffic management from the network operator’s perspective are discussed, taking into account costs and energy savings. Furthermore, a novel resource usage coordination concept in conjunction with the WiFi offloading concept is presented.\",\"PeriodicalId\":315180,\"journal\":{\"name\":\"Design and Deployment of Small Cell Networks\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Design and Deployment of Small Cell Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/CBO9781107297333.007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Design and Deployment of Small Cell Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/CBO9781107297333.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章考虑了网络运营商和服务提供商所面临的挑战,以最有效而廉价的方式适应蜂窝网络中不断增长的流量需求。它建议通过将部分流量卸载到femto蜂窝接入点(fap)和WiFi接入点(wifiap)来解决这些挑战。4G微型和微型蜂窝基站被认为是由网络运营商在设置和维护方面进行管理的,而fap和wifiap通常由最终用户购买和操作。这两种解决方案的主要区别在于,fap在国家监管机构分配给网络运营商的频段上运行,而wifiap在未经许可的频谱上运行。本章分析了这些方法的优缺点,以及与蜂窝和WiFi网络中用于干扰管理的不同机制相关的权衡。此外,还详细讨论了移动网络运营商的各种流量分流方法,包括本地IP接入(LIPA)、选择性IP流量分流(SIPTO)、IP流量移动性(IFOM)、接入网发现和选择功能(ANDSF)以及Hotspot 2.0等。在本章的实验部分,从网络运营商的角度,考虑成本和节能,讨论了流量管理的方法。在此基础上,提出了一种结合WiFi卸载的资源使用协调概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Traffic offloading scenarios for heterogeneous networks
This chapter considers the challenges faced by network operators and service providers accommodating the increasing traffic demands in cellular networks in the most efficient yet inexpensive way. It proposes that these challenges are addressed by offloading part of the traffic to femto cell access points (FAPs) and WiFi access points (WiFiAPs). Whereas 4G micro and pico cell base stations are assumed to be managed by the network operator in terms of setup and maintenance, FAPs and WiFiAPs are normally bought and operated by the end-user. The main difference between these two solutions is that the FAPs operate on the frequency bands assigned to the network operator by national regulators, while WiFiAPs work on unlicensed spectrum. This chapter analyzes the pros and cons of such approaches, and the tradeoffs related to the different mechanisms employed in cellular and WiFi networks for interference management. Moreover, various methods for traffic offloading by the mobile network operator are discussed in detail, including local IP access (LIPA), selective IP traffic offloading (SIPTO), IP flow mobility (IFOM), access network discovery and selection function (ANDSF), and Hotspot 2.0, etc. In the experimental part of this chapter, means for traffic management from the network operator’s perspective are discussed, taking into account costs and energy savings. Furthermore, a novel resource usage coordination concept in conjunction with the WiFi offloading concept is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信