基于HISS模型的故障再激活仿真

Jenny Ryu, D. Espinoza, M. Balhoff, S. Tavassoli
{"title":"基于HISS模型的故障再激活仿真","authors":"Jenny Ryu, D. Espinoza, M. Balhoff, S. Tavassoli","doi":"10.2118/196153-ms","DOIUrl":null,"url":null,"abstract":"\n Long-term integrity and practical storage of CO2 is contingent upon its seal performance and the dynamic sealing capacity of faults for the CO2 storage site. Faults are prone to reactivation with reservoir pressurization caused by CO2 injection. The goal of this study is to create and verify a reservoir elasto-plastic model capable of capturing short-term evolution of fault reactivation and the resulting change of permeability. This model is then used to explore the effects of coupling geomechanics with reservoir fluid flow on the reactivation of faults.\n In this paper, we introduce a workflow for modeling of fault reactivation with fault elements as gridblocks instead of surfaces. Reservoir simulation, with coupled fluid flow and geomechanics, was used for this purpose. The simulation models utilize a geomechanical module to capture elasto-plasticity and a compositional numerical scheme based on an equation of state (EOS) to calculate CO2-brine interaction. The geomechanical module used in this study is based on Hierarchical Single Surface (HISS) model that captures strain softening and hardening, and therefore post-yield plastic deformations related to fault reactivation. The compositional numerical scheme based on EOS calculates the amount of CO2 solubilization in brine as well as the density and viscosity of the CO2- and aqueous-rich phase. In this approach, the flow properties, i.e. permeability and porosity, dynamically change in response to geomechanical effects. The dynamic change was captured through a volumetric strain-permeability law.\n Our simulation results show that the model is capable of capturing short-term evolution of fault reactivation and the resulting change of permeability along the fault. The dynamic changes of fault properties control the extent of fault reactivation, the pressure relief during injection, and the fault sealing capacity.","PeriodicalId":325107,"journal":{"name":"Day 1 Mon, September 30, 2019","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Simulation of Fault Reactivation Using the HISS Model\",\"authors\":\"Jenny Ryu, D. Espinoza, M. Balhoff, S. Tavassoli\",\"doi\":\"10.2118/196153-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Long-term integrity and practical storage of CO2 is contingent upon its seal performance and the dynamic sealing capacity of faults for the CO2 storage site. Faults are prone to reactivation with reservoir pressurization caused by CO2 injection. The goal of this study is to create and verify a reservoir elasto-plastic model capable of capturing short-term evolution of fault reactivation and the resulting change of permeability. This model is then used to explore the effects of coupling geomechanics with reservoir fluid flow on the reactivation of faults.\\n In this paper, we introduce a workflow for modeling of fault reactivation with fault elements as gridblocks instead of surfaces. Reservoir simulation, with coupled fluid flow and geomechanics, was used for this purpose. The simulation models utilize a geomechanical module to capture elasto-plasticity and a compositional numerical scheme based on an equation of state (EOS) to calculate CO2-brine interaction. The geomechanical module used in this study is based on Hierarchical Single Surface (HISS) model that captures strain softening and hardening, and therefore post-yield plastic deformations related to fault reactivation. The compositional numerical scheme based on EOS calculates the amount of CO2 solubilization in brine as well as the density and viscosity of the CO2- and aqueous-rich phase. In this approach, the flow properties, i.e. permeability and porosity, dynamically change in response to geomechanical effects. The dynamic change was captured through a volumetric strain-permeability law.\\n Our simulation results show that the model is capable of capturing short-term evolution of fault reactivation and the resulting change of permeability along the fault. The dynamic changes of fault properties control the extent of fault reactivation, the pressure relief during injection, and the fault sealing capacity.\",\"PeriodicalId\":325107,\"journal\":{\"name\":\"Day 1 Mon, September 30, 2019\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Mon, September 30, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/196153-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, September 30, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/196153-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

二氧化碳的长期完整性和实际储存取决于其密封性能和断层对二氧化碳储存地点的动态密封能力。由于CO2注入引起的储层增压,断层容易重新激活。本研究的目的是建立并验证一个储层弹塑性模型,该模型能够捕捉断层再激活的短期演化及其导致的渗透率变化。然后利用该模型探讨了地质力学与储层流体流动耦合对断层再激活的影响。本文介绍了一种以故障元素为网格块而不是曲面的故障再激活建模工作流程。为此,采用了流体流动和地质力学耦合的油藏模拟。模拟模型利用地质力学模块捕获弹塑性,利用基于状态方程(EOS)的组分数值方案计算co2 -盐水相互作用。本研究中使用的地质力学模块基于分层单表面(HISS)模型,该模型可以捕获应变软化和硬化,从而捕获与断层再激活相关的屈服后塑性变形。基于EOS的组分数值方案计算了CO2在盐水中的增溶量以及CO2和富水相的密度和粘度。在这种方法中,流体特性,即渗透率和孔隙度,会随着地质力学效应而动态变化。通过体积应变-渗透率定律捕捉了动态变化。模拟结果表明,该模型能够捕捉断层再激活的短期演化过程以及由此引起的断层渗透率沿断层方向的变化。断层性质的动态变化控制着断层的再激活程度、注入过程中的泄压程度和断层的封闭性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation of Fault Reactivation Using the HISS Model
Long-term integrity and practical storage of CO2 is contingent upon its seal performance and the dynamic sealing capacity of faults for the CO2 storage site. Faults are prone to reactivation with reservoir pressurization caused by CO2 injection. The goal of this study is to create and verify a reservoir elasto-plastic model capable of capturing short-term evolution of fault reactivation and the resulting change of permeability. This model is then used to explore the effects of coupling geomechanics with reservoir fluid flow on the reactivation of faults. In this paper, we introduce a workflow for modeling of fault reactivation with fault elements as gridblocks instead of surfaces. Reservoir simulation, with coupled fluid flow and geomechanics, was used for this purpose. The simulation models utilize a geomechanical module to capture elasto-plasticity and a compositional numerical scheme based on an equation of state (EOS) to calculate CO2-brine interaction. The geomechanical module used in this study is based on Hierarchical Single Surface (HISS) model that captures strain softening and hardening, and therefore post-yield plastic deformations related to fault reactivation. The compositional numerical scheme based on EOS calculates the amount of CO2 solubilization in brine as well as the density and viscosity of the CO2- and aqueous-rich phase. In this approach, the flow properties, i.e. permeability and porosity, dynamically change in response to geomechanical effects. The dynamic change was captured through a volumetric strain-permeability law. Our simulation results show that the model is capable of capturing short-term evolution of fault reactivation and the resulting change of permeability along the fault. The dynamic changes of fault properties control the extent of fault reactivation, the pressure relief during injection, and the fault sealing capacity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信